| INDIAN SCHOOL AL WADI AL KABIR | |
| :--- | :--- | :--- |
| Department of Mathematics | |
| Worksheet-1 | |
| POLYNOMIALS | |

	Questions of 1 mark each.
1	If one of the zeroes of the quadratic polynomial ($k-1$) $\mathrm{x}^{2}+\mathrm{kx}+1$ is (-3), then find the value of k
2	The sum of the zeroes of the quadratic polynomial $3 \mathrm{x}^{2}-\mathrm{kx}+6$ is 3 , then find the value of k
3	Find the quadratic polynomial whose zeroes are $\sqrt{2}$ and $2 \sqrt{2}$.
4	If zeroes of the polynomial $x^{2}+4 x+2 a$ are α and $\frac{2}{\alpha}$, then the value of a is
5	If p and q are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}-7 \mathrm{x}+3$, then the value of $\mathrm{p}^{2}+\mathrm{q}^{2}$ is
	Questions of 2 marks each
6	If α and β are the zeroes of the polynomial $f(x)=2 x^{2}-4 x+5$ then find the value of $\alpha^{2}+\beta^{2}$
7	If α, β are the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{k}$ such that $\alpha-\beta=1$, find the value of k .
8	If α and β are the zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}$, show that $(\alpha+1)(\beta+1)=1-\mathrm{c}$
9	Find the value of ' k ' such that the quadratic polynomial $x^{2}-(k+6) x+2(2 k+1)$ has sum of the zeros is half of their product
10	Find the zeros of the polynomial $p(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify the relationship between the zeros and its coefficients
11	Find the value of ' k ' so that the zeroes of the quadratic polynomial $3 \mathrm{x}^{2}-\mathrm{kx}+14$ are in the ratio 7:6
	Questions of 3 marks each
12	If the Zeroes of the Quadratic Polynomial 6x ${ }^{2}-3-7 \mathrm{x}$ are α and β then find the quadratic polynomial whose zeroes are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$
13	If α, and β are the zeros of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$, then form a quadratic polynomial whose zeros are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$
14	If one zero of the polynomial $3 \mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{k}+1$ is seven times the other, then find k
15	If the Zeroes of the Quadratic Polynomial $x^{2}+4 x+3$ are α and β then find the quadratic polynomial whose zeroes are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$

$\begin{aligned} & \tilde{0} \\ & 0 \\ & 3 \\ & \vdots \\ & \vdots \end{aligned}$	1	$\frac{4}{3}$	2	9	3.	$\mathrm{x}^{2}-3 \sqrt{2} \mathrm{x}+4$	4	1
	5	$\frac{37}{4}$	6	-1	7	6	8	
	9	5	10	$x=\frac{\sqrt{3}}{4} \quad x=-\frac{2}{\sqrt{3}}$	11	117	12	$18 x^{2}+85 x+1$
	13	$x^{2}-2 p^{2} x-4 q x+p^{4}-4 p^{2} q$	14	$2 / 3$	15	$3 x^{2}-16 x+16$		

