

Q.10.	If α and β are the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}-5$ then find the value of $\alpha^{2}+\beta^{2}$.
Q.11.	If α and β are the zeros of the polynomial $\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{m}$ such that $\alpha-\beta=1$, find m .
Q.12.	A teacher asked 10 of his students to write a polynomial in one variable on a paper and then to handover the paper. The following were the answers given by the students: $\begin{aligned} & 2 \mathrm{x}+3,3 x^{2}+7 \mathrm{x}+2,4 x^{3}+3 x^{2}+2, x^{3}+\sqrt{3 x}+7,7 \mathrm{x}+\sqrt{7}, 5 x^{3}-7 \mathrm{x}+2,2 x^{2}+3-\frac{5}{x} \\ & 5 \mathrm{x}-\frac{1}{2}, \mathrm{a} x^{3}+\mathrm{b} x^{2}+\mathrm{cx}+\mathrm{d}, \mathrm{x}+\frac{1}{x} \end{aligned}$ Answer the following questions: (i) How many of the above ten, are not polynomials? (ii) How many of the above ten, are quadratic polynomials?
Q.13.	Find the value of m if one zero of the polynomial $\left(m^{2}+4\right) x^{2}+65 x+4 \mathrm{~m}$ is reciprocal of the other.
	Questions of 3 marks each
Q.14.	Find the zeroes of the polynomial $2 x^{2}-x-6$ and verify the relationship of zeroes with the coefficients.
Q.15.	If α and β are the zeroes of the polynomial $3 \mathrm{x}^{2}-\mathrm{x}-4$, find the value of $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$.
Q.16.	If α and β are the zeroes of the polynomial $\mathrm{x}^{2}-\mathrm{x}-2$, find a polynomial whose zeroes are $(2 \alpha+1)$ and $(2 \beta+1)$.
Q.17	Obtain zeroes of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify relation between its zeroes and coefficients.
Q.18.	If α and β are the zeroes of the polynomial $\mathrm{x}^{2}+4 \mathrm{x}+3$, find a polynomial whose zeroes are $\left(1+\frac{\beta}{\alpha}\right)$ and $\left(1+\frac{\alpha}{\beta}\right)$.
Q.19.	If the sum of the squares of zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=x^{2}-8 \mathrm{x}+\mathrm{k}$ is 40 , then find the value of k.

	Question of 4 marks						
Q.20.	Case Study Based Due to heavy storm an electric wire got bent as shown in the figure. It followed a mathematical statement. Answer the following questions: (i) Name the shape in which the wire is bent. (ii) Find the number of zeroes of the polynomial (shape of the wire). (iii) Find the zeroes of the polynomial. (iv) Find the quadratic polynomial from the given zeroes.						
ANSWERS							
Q. 1	-10	Q. 2	$-\frac{3}{2}$	Q. 3	5	Q. 4	$3 \mathrm{x}^{2}+2 \mathrm{x}-9$
Q. 5	$-\frac{15}{2}$	Q. 6	5	Q. 7	$x^{2}-6 x+9$	Q. 8	$\mathrm{c}=\mathrm{a}$
Q. 9	$\mathrm{a}=\frac{1}{2}, \mathrm{c}=5$	Q. 10	26	Q. 11	6	Q. 12	(i) 3 (ii) 1
Q. 13	$\mathrm{m}=2$	Q. 14	Zeroes 2 and $-\frac{3}{2}$	Q. 15	$-\frac{64}{81}$	Q. 16	$x^{2}-4 \mathrm{x}-5$
Q. 17	$-\frac{2}{\sqrt{3}}, \frac{\sqrt{3}}{4}$	Q. 18	$3 x^{2}-16 x+16$	Q. 19	$\mathrm{k}=12$	Q. 20	(i) Parabola (ii) 2 (iii) $-1,3$ (iv) $x^{2}-2 x-3$

