			INDIAN SCHOOL AL WADI AL KABIR Department: Mathematics Class X Worksheet - Circles				
							-10-2022
Questions of 1 mark each							
Q.1.	find	is a tang	a poi	a circle	ntr	er	$\mathrm{B}=30^{\circ}$
	A	30°	B	60°	C	D	50°
Q.2.	From an external point P , tangents PA and PB are drawn to a circle with centre O . If CD is the tangent to the circle at a point E and $\mathrm{PA}=14 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{PCD}$.						
	A	28 cm	B	27 cm	C	D	25 cm
Q.3.	Two concentric circles are of radii 10 cm and 8 cm , then the length of the chord of the larger circle which touches the smaller circle is						
	A	6 cm	B	12 cm	C	D	9 cm

Q.4. In the given fig, CP and CQ are tangents to a circle with centre O and line segment AB touches the circle at R with $\mathrm{CP}=11 \mathrm{~cm}, \mathrm{AR}=3 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$, the BR is

A	4 cm	B	3 cm	C	5 cm	D	10 cm

Q.5. In the given figure, PA is a tangent from an external point P to a circle with centre O . If $\angle \mathrm{POB}=115^{\circ}$, then measure of $\angle \mathrm{APO}$ is

A
20°
B

C	25°	D	65°

Q.6. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is

A	$\sqrt{7} \mathrm{~cm}$	B	$2 \sqrt{7} \mathrm{~cm}$	C	10 cm	D	5 cm

Q.7. If the angle between two tangents drawn from an external point P to a circle of radius ' a ' and centre O is 60°, then the length of OP is

A	$\sqrt{3} a$	B	$2 a$	C	$4 a$	D	$\frac{1}{2} a$

Q.8. In figure, PQ is tangent to the circle with centre at O , at the point B . If $\angle \mathrm{AOB}=100^{\circ}$, then $\angle \mathrm{ABP}$ is

A	30°	B	60°	C	40°	D	50°

Q.9.	In the figure, AB and CD are common tangents to circle which touch each other at D . If $\mathrm{AB}=8 \mathrm{~cm}$, then the length of CD is
Q.10.	DIRECTION: In the given question, a Statement of Assertion (A) is followed by a Statement of Reason (R). Choose the correct option. Statement A (Assertion): If two tangents are drawn to a circle from an external point, then they subtend equal angles at the centre. Statement $R($ Reason): A parallelogram circumscribing a circle is a rhombus. (A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). (C) Assertion (A) is true but reason (R) is false. (D) Assertion (A) is false but reason (R) is true.
Questions of 2 marks each	
incircle is 10cm, then find the value of x.	

Questions of 3 marks each

Q. 14.

Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.

Q. 15.

In the figure, $A B$ is a chord of circle with centre $O, A O C$ is diameter and $A T$ is tangent at A. Prove that $\angle \mathrm{BAT}=\angle \mathrm{ACB}$.

(iv)	Find $\angle \mathrm{ORP}$		A	90°	B	70°	C	100°
D	60°							

ANSWERS							
Q.1	B	Q.2	A	Q.3	B	Q.4	A
Q.5	C	Q.6	B	Q.7	B	Q.8	D
Q.9	A	Q.10	B	Q.11	21 cm	Q.12	60°, equilateral
Q.13	3 cm	Q.16	$15 \mathrm{~cm}, 13 \mathrm{~cm}$	Q.17	$\frac{20}{3} \mathrm{~cm}$	Q.19	$\frac{1}{3}$
Q.20(i)	C	(ii)	A	(iii)	B	(iv)	A

