

INDIAN SCHOOL AL WADI AL KABIR

Class XII, Mathematics

SAMPLE PAPER No. 1, M.C.Q & Case Study, 30-08-2021

Q.1.	For what value of $x : \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0?$								
	Α	-1	В	0	С	2	D	None of these	
Q.2.	The value of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ which satisfy the equation $AA^{/} = I$.								
	A	$x = \mp \frac{1}{\sqrt{2}}, y = \mp \frac{1}{\sqrt{6}},$ $z = \mp \frac{1}{\sqrt{3}}$	В	$x = \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{6}},$ $z = \frac{1}{\sqrt{3}}$	C	$x = \frac{-1}{\sqrt{2}}, y = \frac{-1}{\sqrt{6}},$ $z = \frac{-1}{\sqrt{3}}$	D	None of these	
Q.3.	If A is a square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to								
	Α	Α	B	I – A	С	Ι	D	3A	
Q.4.	If t	he matrix A is both sym	met	ric and skew-symmetri	c, th	nen	r		
	A	A is a diagonal matrix	B	A is zero matrix	С	A is a square matrix	D	None of these	
Q.5.	If A	$\mathbf{A} = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is such that	at A ²	= I, then		_			
	A	$1 + \alpha^2 + \beta \gamma = 0$	B	$1 - \alpha^2 + \beta \gamma = 0$	С	$1 - \alpha^2 - \beta \gamma = 0$	D	$1 + \alpha^2 - \beta \gamma = 0$	
Q.6.	The	e value of x, y and z fro	m th	e equations $\begin{bmatrix} x + y + z \\ x + z \\ y + z \end{bmatrix}$	=	[9 5 7] are			
	A	x = 2, y = 4, z = 3	B	x = 4, y = 2, z = 3	С	x = 2, y = 3, z = 4	D	None of these	
Q.7.	The	e value of k, a non-zero	scal	ar, if $2\begin{bmatrix} 1 & 2 & 3 \\ -1 & -3 & 2 \end{bmatrix} + \frac{1}{2}$	$k \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 1 \\ 4 & 2 & 1 \end{bmatrix}$	10] is	5	
	A	1	B	2	С	0	D	None of these	
Q.8.	If A	$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \text{ then } A^2$	- 5A	+ 7I is					
	Α	0	B	Ι	C	A	D	None of these	

Q.9.	The	value of determinant	1 1 : 1	$\begin{vmatrix} 1 & 1 \\ 1+x & 1 \\ 1 & 1+y \end{vmatrix}$ equal to				
	Α	X	B	У	С	xy	D	x^2y^2
Q.10	If A	is invertible square ma	ıtrix	then adj (A ^T) is				
	Α	A ^T	B	Α	С	(Adj A) ^T	D	None of these
Q.11	The	system of equations $x + x$	2y +	3z = 7, 2x - y - 5z - 13	= 0,	-x + y - z - 1 1 = 0 can b	be wri	tten as
	Α	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -5 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$	7 13 11		С	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -5 \\ -1 & 1 & -1 \end{bmatrix}$	7 13 11	
	В	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -5 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	7 13 11		D	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -5 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} x \end{bmatrix}$	у	$\mathbf{z}]\begin{bmatrix}7\\13\\11\end{bmatrix}$
Q.12	If $A = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$, then value of adj A is							
	Α	k ²⁷	B	k ⁹	С	k ⁶	D	None of these
Q.13	Fine	d the values of a and b	if A	= B, where A = $\begin{bmatrix} a+4\\ 8 \end{bmatrix}$	- 3	$\begin{bmatrix} b \\ 6 \end{bmatrix}$, B = $\begin{bmatrix} 2a+2 & b \\ 8 & b^2 \end{bmatrix}$	$\begin{bmatrix} 5^2 \\ -5b \end{bmatrix}$	
	Α	a = 2 & b = 2	B	a = -2 & b = 2	С	a = -2 & b = -2	D	None of these
Q.14	Find	$d x \text{ if } A = \begin{bmatrix} \cos x & \sin x \\ \sin x & \cos x \\ 0 & 0 \end{bmatrix}$	x (x ()) is a singular matrix				
	A	$\frac{\pi}{2}$	B	$\frac{\pi}{4}$	С	$\frac{\pi}{3}$	D	$\frac{\pi}{6}$
Q.15	Find	$d x \text{ if } A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & x \end{bmatrix}$	is	a singular matrix				
	Α	5	B	3	С	9	D	27
Q.16	If $A = \begin{bmatrix} 1 & 2 & 4 \\ 5 & 7 & 8 \\ 9 & 10 & 12 \end{bmatrix}$, find the co-factors of elements of 7 and 12.							
	Α	-24 & -3	B	24 & -3	С	-24 & 3	D	None of these
Q.17	The	ere are two values of x v	whic	h makes, $\begin{vmatrix} 1 & -2 & 5 \\ 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$	= 8	26, then sum of these	value	s is
	A	4	В	5	С	-4	D	9

Q.18	The number of distinct roots of $\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0$, in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is								
	A	one	B	two	С	three	D	None of these	
Q.19	Let A be square matrix of order 3×3 , then $ kA $ is equal to								
	A	k A	B	k ² A	С	k ³ A	D	3k A	
Q.20	If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and C_{ij} is co-factors of a_{ij} , then the value of Δ is given by								
	A	$a_{11}C_{31} + a_{12}C_{32} + a_{13}C_{33}$	B	$a_{11}C_{11} + a_{12}C_{21} + a_{13}C_{31}$	С	$a_{21}C_{11} + a_{22}C_{12} + a_{23}C_{13}$	D	$a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$	
Q.21.	If $A = [a_{ij}]$ is square matrix of order 3×3 such that $a_{ij} = i^2 - j^2$, then A is								
	A	Symmetric matirx	В	Null matrix	С	Skew-symmetric	D	Diagonal matrix	
Q.22.	If $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$ which satisfy the equation $A'A =$, then $x + y$ is.								
	A	3	B	0	С	-3	D	Ι	
Q.23.	The	e value of $\tan\left(2\tan^{-1}\frac{1}{5}\right)$ -	$\left(\frac{\pi}{4}\right)$ is						
	A	-7/17	B	7/17	С	-7/5	D	None of these	
Q.24.	cos	$x^{-1}\sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}}$ is equal to)			-			
	A	tan ⁻¹ x	B	$\frac{1}{2}$ tan ⁻¹ x	С	$\tan^{-1}x^2$	D	None of these	
Q.25.	For	what value of k is the f	follo	wing function continue	ous a	at $x = 2?$			
				$f(x) = \begin{cases} 2x + 2\\ k, \\ 3x-1, \end{cases}$	l, '	$ \begin{array}{l} x < 2 \\ x = 2 \\ x > 2 \end{array} $			
	A	5	B	3	С	2	D	None of these	
Q.26.	The	e value of k, a non-zero	scal	ar, if $2\begin{bmatrix} 1 & 2 & 3 \\ -1 & -3 & 2 \end{bmatrix} + \frac{1}{2}$	k[1 3	$\begin{bmatrix} 0 & 2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 1 \\ 4 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 10\\ 4 \end{bmatrix}$ is	3	
	A	1	B	2	С	0	D	None of these	
Q.27.	The	e values of x for which t	f(x)	$=\frac{x-2}{x+1}$, $x \neq -1$ is increa	asin	g or decreasing			
	A	Increasing on R - {0}	B	Increasing on R - {-1}	С	Increasing on R - {1}	D	Increasing on R	

Q.28.	Which of the following functions is strictly increasing on $\left(0, \frac{\pi}{2}\right)$?									
	A	Cos x	B	Cos 2x	С	Cos 3x	D	Tan x		
Q.29.	The intervals in which the function $f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$ in increasing									
	A	(-2, 1) ∪ (3, ∞)	В	(-2, -1) ∪ (3,∞)	С	(-2, 1) ∪ (2,∞)	D	Increasing on R		
Q.30.	The slope of the tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point (2, -1) is									
	A	22/7	B	6/7	С	7/6	D	-6/7		
Q.31.	The equation of the normal to the curve $y = \sin x$ at $(0, 0)$ is									
	A	x = 0	В	y = 0	С	x + y = 0	D	$\mathbf{x} - \mathbf{y} = 0$		
Q.32.	The point on the curve $y = x + \frac{1}{x}$ at which tangent is parallel to x - axis									
	A	(1, 2) and (-1, -2)	B	(1, 2) and (-1, 2)	С	(-1, 2) and (-1, -2)	D	None of these		
Q.33.	The curves $2x = y^2$ and $2xy = k$ cut at right angles if k^2 is equal to									
	A	8	В	4	С	2	D	None of these		
Q.34.	The	e point on the curve $y = x$	² - 1	1x + 5 at which the equation	atior	n of the tangent is $y = x$	x - 11			
	A	(2, -9)	B	(-2, -9)	С	(2,9)	D	None of these		
Q.35.	If	$x = a \sin^3 \theta$, $y = a \cos^2 \theta$	$^{3}\theta$, t	then $\frac{dy}{dx}$ is						
	A	-Cot θ	В	$\cot \theta$	С	$-\tan \theta$	D	None of these		
Q.36.	Fin	$d \frac{d^2 y}{dx^2}$ when $\theta = \frac{\pi}{2}$ when	x =	$a(\theta + \sin \theta)$ and $y =$	a(1	$-\cos\theta$)				
	A	-1/a	B	2/a	С	1/a	D	None of these		
Q.37.	If $y = \log \sqrt{\frac{1 - \cos x}{1 + \cos x}}$, then $\frac{dy}{dx}$ is									
	A	Cos x	B	Sec x	С	Cosec x	D	None of these		
Q.38.	If y	$y \log x = x - y$, then $\frac{dy}{dx}$ is								
	A	$\frac{1 - \log x}{(1 + \log x)^2}$	В	$\frac{\log x}{(1 + \log x)^2}$	С	$\frac{\log x}{(1 - \log x)^2}$	D	None of these		

CASE STUDY QUESTION									
Q.39.	She Raj Let	Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1, 2, 3, 4, 5, 6\}$. Let A be the set of players while B be set of all possible outcomes. A = $\{S, D\}$, B = $\{1, 2, 3, 4, 5, 6\}$							
(a)	Let	$R: B \to B \text{ be defined } I$	by R	$= \{(x, y) : y \text{ is divisible}\}$	le by	(x) is			
	А	Reflexive and transitive but not symmetric	B	Reflexive and symmetric but not transitive	С	Not reflexive but symmetric and transitive	D	Equivalence Sol	
(b)	Raj	i wants to know the nur	nber	of functions from A to	ъB.	How many number o	f fun	ctions are possible?	
	A	6 ²	B	2 ⁶	С	6!	D	2 ¹²	
(c)	Let	R be a relation on B de	fine	d by $R = \{(1, 2), (2, 2)\}$, (1,	3), (3, 4), (3, 1), (4, 3), (5,	5)}. Then R is	
	A	Symmetric	B	Reflexive	С	Transitive	D	None of these three	
(d)	Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?								
	A	6 ²	B	2 ⁶	С	6!	D	2 ¹²	
(e)	Let	$R: B \to B \text{ be defined } I$	oy R	$= \{(1, 1), (1, 2), (2, 2)\}$	(3, 3	3), (4, 4), (5, 5), (6, 6)	}, the	en R is	
	A	Symmetric	B	Reflexive and Transitive	С	Transitive and symmetric	D	Equivalence	

CASE STUDY QUESTION									
Q.40.	The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. 'A' is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby, Ram Robert and Rahim suggested to the film to place the hoarding board at three different locations namely C, D and E. 'C' is at the height of 10 metres from the ground level. For the viewer 'A', the angle of elevation of 'D' is double the angle of elevation of 'C'. The angle of elevation of 'E' is triple the angle of elevation of 'C' for the same viewer.								
(a)	Measure of ∠CAB =								
	A	tan ⁻¹ 2	В	$\tan^{-1}\frac{1}{2}$	С	tan ⁻¹ 1	D	tan ⁻¹ 3	
(b)	Me	asure of ∠DAB =							
	A	$\tan^{-1}\frac{3}{4}$	B	tan ⁻¹ 3	С	$\tan^{-1}\frac{4}{3}$	D	tan ⁻¹ 4	
(c)	Me	asure of ∠EAB							
	A	tan ⁻¹ 11	B	tan ⁻¹ 3	С	$\tan^{-1}\frac{2}{11}$	D	$\tan^{-1}\frac{11}{2}$	
(d)	A' is met	s another viewer standing ters, then the difference l	g on t petw	the same line of observa een ∠CAB and ∠CA'B is	tion	across the road. If the v	width	of the road is 5	
	A	$\tan^{-1}\frac{1}{12}$	B	$\tan^{-1}\frac{1}{8}$	С	$\tan^{-1}\frac{2}{5}$	D	$\tan^{-1}\frac{11}{21}$	
(e)	Dor	main and Range of \tan^{-1}	x =	=					
	Α	$R+,\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	B	$R-,\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	C	$R,\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	D	$R,\left(0,\frac{\pi}{2}\right)$	

	1	А	2	А	3.	С	4	В
	5	С	6	А	7	В	8	А
	9	С	10	С	11	В	12	С
	13	В	14	В	15	В	16	А
	17	С	18	А	19	С	20	D
S	21	С	22	С	23	А	24	В
nswei	25	А	26	А	27	D	28	D
A	29	А	30	В	31	С	32	А
	33	А	34	А	35	А	36	С
	37	С	38	В	39	a) A	40	a) B
						b) A		b) C
						c) D		c) D
						d) D		d) A
						e) B		e) C