|  |  | artment of hematics $\qquad$ -(a) | INDIAN SCHOOL AL WADI AL KABIR <br> Class XII, Mathematics <br> SAMPLE PAPER No. 1, M.C.Q \& Case Study, 30-o8-2021 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q.1. | For what value of $x:\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$ ? |  |  |  |  |  |  |  |
|  | A | -1 | B | 0 | C | 2 | D | None of these |
| Q.2. | The value of $x, y, z$ if the matrix $A=\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ which satisfy the equation $A A^{\prime}=\mathrm{I}$. |  |  |  |  |  |  |  |
|  | A | $x=\mp \frac{1}{\sqrt{2}}, y=\mp \frac{1}{\sqrt{6}}$, $z=\mp \frac{1}{\sqrt{3}}$ | B | $x=\frac{1}{\sqrt{2}}, y=\frac{1}{\sqrt{6}}$, $z=\frac{1}{\sqrt{3}}$ | C | $x=\frac{-1}{\sqrt{2}}, y=\frac{-1}{\sqrt{6}}$, $z=\frac{-1}{\sqrt{3}}$ | D | None of these |
| Q.3. | If $A$ is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to |  |  |  |  |  |  |  |
|  | A | A | B | I - A | C | I | D | 3A |
| Q.4. | If the matrix A is both symmetric and skew-symmetric, then |  |  |  |  |  |  |  |
|  | A | A is a diagonal matrix | B | A is zero matrix | C | $A$ is a square matrix | D | None of these |
| Q.5. | If $\mathrm{A}=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $\mathrm{A}^{2}=\mathrm{I}$, then |  |  |  |  |  |  |  |
|  | A | $1+\alpha^{2}+\beta \gamma=0$ | B | $1-\alpha^{2}+\beta \gamma=0$ | C | $1-\alpha^{2}-\beta \gamma=0$ | D | $1+\alpha^{2}-\beta \gamma=0$ |
| Q.6. | The value of $x$, $y$ and $z$ from the equations $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$ are |  |  |  |  |  |  |  |
|  | A | $x=2, y=4, z$ $=3$ | B | $x=4, y=2, z$ $=3$ | C | $x=2, y=3, z$ $=4$ | D | None of these |
| Q. 7. | The value of $k$, a non-zero scalar, if $2\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -3 & 2\end{array}\right]+\mathrm{k}\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 4 & 5\end{array}\right]=\left[\begin{array}{ccc}4 & 4 & 10 \\ 4 & 2 & 14\end{array}\right]$ is |  |  |  |  |  |  |  |
|  | A | 1 | B | 2 | C | 0 | D | None of these |
| Q.8. | If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, then $A^{2}-5 A+7 I$ is |  |  |  |  |  |  |  |
|  | A | 0 | B | I | C | A | D | None of these |



| Q. 18 | The number of distinct roots of $\left\|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right\|=0$, in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | one | B | two | C | three | D | None of these |
| Q. 19 | Let A be square matrix of order $3 \times 3$, then $\|\mathrm{kA}\|$ is equal to |  |  |  |  |  |  |  |
|  | A | $\mathrm{k}\|\mathrm{A}\|$ | B | $k^{2}\|A\|$ | C | $k^{3}\|A\|$ | D | $3 \mathrm{k}\|\mathrm{A}\|$ |
| Q. 20 | If $\Delta=\left\|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right\|$ and $c_{i j}$ is co-factors of $a_{i j}$, then the value of $\Delta$ is given by |  |  |  |  |  |  |  |
|  | A | $\begin{aligned} & \mathrm{a}_{11} \mathrm{C}_{31}+\mathrm{a}_{12} \mathrm{C}_{32} \\ & +\mathrm{a}_{13} \mathrm{C}_{33} \end{aligned}$ | B | $\begin{aligned} & \mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{12} \mathrm{C}_{21} \\ & +\mathrm{a}_{13} \mathrm{C}_{31} \end{aligned}$ | C | $\begin{aligned} & \mathrm{a}_{21} \mathrm{C}_{11}+\mathrm{a}_{22} \mathrm{C}_{12} \\ & +\mathrm{a}_{23} \mathrm{C}_{13} \end{aligned}$ | D | $\begin{aligned} & a_{11} C_{11}+a_{21} C_{21} \\ & +\mathrm{a}_{31} \mathrm{C}_{31} \end{aligned}$ |
| Q.21. | If $A=\left[a_{i j}\right]$ is square matrix of order $3 \times 3$ such that $a_{i j}=i^{2}-j^{2}$, then $A$ is |  |  |  |  |  |  |  |
|  | A | Symmetric matirx | B | Null matrix | C | Skew-symmetric | D | Diagonal matrix |
| Q.22. | If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ \mathrm{x} & 2 & \mathrm{y}\end{array}\right]$ which satisfy the equation $\mathrm{A}^{\prime} \mathrm{A}=$, then $\mathrm{x}+\mathrm{y}$ is. |  |  |  |  |  |  |  |
|  | A | 3 | B | 0 | C | -3 | D | I |
| Q.23. | The value of $\tan \left(2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right)$ is |  |  |  |  |  |  |  |
|  | A | -7/17 | B | 7/17 | C | -7/5 | D | None of these |
| Q.24. | $\cos ^{-1} \sqrt{\frac{1+\sqrt{1+x^{2}}}{2 \sqrt{1+x^{2}}}}$ is equal to |  |  |  |  |  |  |  |
|  | A | $\tan ^{-1} \mathrm{x}$ | B | $\frac{1}{2} \tan ^{-1} \mathrm{x}$ | C | $\tan ^{-1} x^{2}$ | D | None of these |
| Q.25. | For what value of k is the following function continuous at $\mathrm{x}=2$ ?$f(x)=\left\{\begin{array}{lr} 2 x+1, & x<2 \\ k, & x=2 \\ 3 x-1, & x>2 \end{array}\right.$ |  |  |  |  |  |  |  |
|  | A | 5 | B | 3 | C | 2 | D | None of these |
| Q.26. | The value of $k$, a non-zero scalar, if $2\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -3 & 2\end{array}\right]+\mathrm{k}\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 4 & 5\end{array}\right]=\left[\begin{array}{ccc}4 & 4 & 10 \\ 4 & 2 & 14\end{array}\right]$ is |  |  |  |  |  |  |  |
|  | A | 1 | B | 2 | C | 0 | D | None of these |
| Q.27. | The values of $x$ for which $f(x)=\frac{x-2}{x+1}, x \neq-1$ is increasing or decreasing |  |  |  |  |  |  |  |
|  | A | Increasing on R - 00$\}$ | B | Increasing on $\mathrm{R}-\{-1\}$ | C | Increasing on R - \{1\} | D | Increasing on R |


| Q.28. | Which of the following functions is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ ? |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | $\operatorname{Cos} \mathrm{x}$ | B | $\operatorname{Cos} 2 \mathrm{x}$ | C | $\operatorname{Cos} 3 \mathrm{x}$ | D | Tan x |
| Q.29. | The intervals in which the function $\mathrm{f}(\mathrm{x})=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} \mathrm{x}+11$ in increasing |  |  |  |  |  |  |  |
|  | A | $(-2,1) \cup(3, \infty)$ | B | $(-2,-1) \cup(3, \infty)$ | C | $(-2,1) \cup(2, \infty)$ | D | Increasing on R |
| Q.30. | The slope of the tangent to the curve $\mathrm{x}=\mathrm{t}^{2}+3 \mathrm{t}-8, \mathrm{y}=2 \mathrm{t}^{2}-2 \mathrm{t}-5$ at the point $(2,-1)$ is |  |  |  |  |  |  |  |
|  | A | 22/7 | B | 6/7 | C | 7/6 | D | -6/7 |
| Q.31. | The equation of the normal to the curve $\mathrm{y}=\sin \mathrm{x}$ at $(0,0)$ is |  |  |  |  |  |  |  |
|  | A | $x=0$ | B | $y=0$ | C | $x+y=0$ | D | $x-y=0$ |
| Q.32. | The point on the curve $\mathrm{y}=\mathrm{x}+\frac{1}{\mathrm{x}}$ at which tangent is parallel to x - axis |  |  |  |  |  |  |  |
|  | A | $(1,2)$ and (-1,-2) | B | $(1,2)$ and (-1, 2) | C | $(-1,2)$ and (-1,-2) | D | None of these |
| Q.33. | The curves $2 \mathrm{x}=\mathrm{y}^{2}$ and $2 \mathrm{xy}=\mathrm{k}$ cut at right angles if $\mathrm{k}^{2}$ is equal to |  |  |  |  |  |  |  |
|  | A | 8 | B | 4 | C | 2 | D | None of these |
| Q.34. | The point on the curve $\mathrm{y}=\mathrm{x}^{2}-11 \mathrm{x}+5$ at which the equation of the tangent is $\mathrm{y}=\mathrm{x}-11$ |  |  |  |  |  |  |  |
|  | A | ( $2,-9$ ) | B | (-2, -9) | C | $(2,9)$ | D | None of these |
| Q.35. | If $\mathrm{x}=\mathrm{a} \sin ^{3} \theta, \mathrm{y}=\mathrm{a} \cos ^{3} \theta$, then $\frac{d y}{d x}$ is |  |  |  |  |  |  |  |
|  | A | $-\operatorname{Cot} \theta$ | B | $\operatorname{Cot} \theta$ | C | $-\tan \theta$ | D | None of these |
| Q.36. | Find $\frac{d^{2} \mathrm{y}}{\mathrm{dx}^{2}}$ when $\theta=\frac{\pi}{2}$ when $\mathrm{x}=\mathrm{a}(\theta+\sin \theta)$ and $\mathrm{y}=\mathrm{a}(1-\cos \theta)$ |  |  |  |  |  |  |  |
|  | A | -1/a | B | 2/a | C | 1/a | D | None of these |
| Q.37. | If $\mathrm{y}=\log \sqrt{\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}}$, then $\frac{d y}{d x}$ is |  |  |  |  |  |  |  |
|  | A | $\operatorname{Cos} \mathrm{x}$ | B | $\operatorname{Sec} \mathrm{x}$ | C | Cosec x | D | None of these |
| Q.38. | If $\mathrm{y} \log \mathrm{x}=\mathrm{x}-\mathrm{y}$, then $\frac{d y}{d x}$ is |  |  |  |  |  |  |  |
|  | A | $\frac{-\log \mathrm{x}}{(1+\log \mathrm{x})^{2}}$ | B | $\frac{\log x}{(1+\log x)^{2}}$ | C | $\frac{\log x}{(1-\log x)^{2}}$ | D | None of these |

## CASE STUDY QUESTION

Q.39. Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let $A$ be the set of players while $B$ be set of all possible outcomes. $A=\{S, D\}, B=\{1,2,3,4,5,6\}$

$\{S, D\}, B=\{1,2,3,4,5,6\}$ Based on the above information answer the following:

| (a) | Let $\mathrm{R}: \mathrm{B} \rightarrow \mathrm{B}$ be defined by $\mathrm{R}=\{(\mathrm{x}, \mathrm{y})$ : y is divisible by x$\}$ is |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | Reflexive and transitive but not symmetric | B | Reflexive and symmetric but not transitive | C | Not reflexive but symmetric and transitive | D | Equivalence Sol |
| (b) | Raji wants to know the number of functions from A to B . How many number of functions are possible? |  |  |  |  |  |  |  |


|  | A | $6^{2}$ | B | $2^{6}$ | C | $6!$ | D | $2^{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (c) | Let R be a relation on B defined by $\mathrm{R}=\{(1,2),(2,2),(1,3),(3,4),(3,1),(4,3),(5,5)\}$. Then R is |  |  |  |  |  |  |  |
|  | A | Symmetric | B | Reflexive | C | Transitive | D | None of these three |
| (d) | Raji wants to know the number of relations possible from $A$ to $B$. How many numbers of relations are possible? |  |  |  |  |  |  |  |
|  | A | $6^{2}$ | B | $2^{6}$ | C | $6!$ | D | $2^{12}$ |
| (e) | Let $\mathrm{R}: \mathrm{B} \rightarrow \mathrm{B}$ be defined by $\mathrm{R}=\{(1,1),(1,2),(2,2)(3,3),(4,4),(5,5),(6,6)\}$, then R is |  |  |  |  |  |  |  |
|  | A | Symmetric | B | Reflexive and Transitive | C | Transitive and symmetric | D | Equivalence |

## CASE STUDY QUESTION

| Q.40. | The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. ' A ' is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby, Ram Robert and Rahim suggested to the film to place the hoarding board at three different locations namely C, D and E. ' $C$ ' is at the height of 10 metres from the ground level. For the viewer 'A', the angle of elevation of ' D ' is double the angle of elevation of ' C '. The angle of elevation of ' E ' is triple the angle of elevation of ' C ' for the same viewer. |  |  |  |  | k at the figure rmation answer |  | ased on the above ng: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | Measure of $\angle \mathrm{CAB}=$ |  |  |  |  |  |  |  |
|  | A | $\tan ^{-1} 2$ | B | $\tan ^{-1} \frac{1}{2}$ | C | $\tan ^{-1} 1$ | D | $\tan ^{-1} 3$ |
| (b) | Measure of $\angle \mathrm{DAB}=$ |  |  |  |  |  |  |  |
|  | A | $\tan ^{-1} \frac{3}{4}$ | B | $\tan ^{-1} 3$ | C | $\tan ^{-1} \frac{4}{3}$ | D | $\tan ^{-1} 4$ |
| (c) | Measure of $\angle E A B$ |  |  |  |  |  |  |  |
|  | A | $\tan ^{-1} 11$ | B | $\tan ^{-1} 3$ | C | $\tan ^{-1} \frac{2}{11}$ | D | $\tan ^{-1} \frac{11}{2}$ |
| (d) | $A^{\prime}$ is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between $\angle C A B$ and $\angle C A^{\prime} B$ is |  |  |  |  |  |  |  |
|  | A | $\tan ^{-1} \frac{1}{12}$ | B | $\tan ^{-1} \frac{1}{8}$ | C | $\tan ^{-1} \frac{2}{5}$ | D | $\tan ^{-1} \frac{11}{21}$ |
| (e) | Domain and Range of $\tan ^{-1} \mathrm{x}==$ |  |  |  |  |  |  |  |
|  | A | $\mathrm{R}+\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ | B | R-, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ | C | $\mathrm{R},\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ | D | R, $\left(0, \frac{\pi}{2}\right)$ |


| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 1 | A | 2 | A | 3. | C | 4 | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | C | 6 | A | 7 | B | 8 | A |
|  | 9 | C | 10 | C | 11 | B | 12 | C |
|  | 13 | B | 14 | B | 15 | B | 16 | A |
|  | 17 | C | 18 | A | 19 | C | 20 | D |
|  | 21 | C | 22 | C | 23 | A | 24 | B |
|  | 25 | A | 26 | A | 27 | D | 28 | D |
|  | 29 | A | 30 | B | 31 | C | 32 | A |
|  | 33 | A | 34 | A | 35 | A | 36 | C |
|  | 37 | C | 38 | B | 39 | a) A <br> b) A <br> c) D <br> d) D <br> e) B | 40 | a) B <br> b) C <br> c) D <br> d) A <br> e) C |

