$+\infty$ (x) Department of 0 Mathematics © \qquad ©			INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics Sample paper - Set II MCQ, ASSERTION \& REASONING, CASE STUDY 29-08-2021						
OBJECTIVE TYPE (1 Mark)									
Q.1.	The coordinates of the point Q are $(2,5)$. Its distance from the Y-axis is ___ units.								
	A	2	B	5	C	7	D	3	
Q. 2.	A rational number between $\sqrt{2}$ and $\sqrt{3}$ is								
	A	$\frac{\sqrt{2}+\sqrt{3}}{2}$	B	$\frac{\sqrt{2} \times \sqrt{3}}{2}$	C	1.5	D	1.8	
Q.3.	The value of $1.999 \ldots$ in the form $\frac{p}{q^{\prime}}$ where p and q are integers and $\mathrm{q}=0$ is								
	A	$\frac{19}{10}$	B	$\frac{1999}{1000}$	C	2	D	$\frac{1}{9}$	
Q.4.	Rationalizing factor of $(1+\sqrt{2}+\sqrt{3})$ is								
	A	2	B	$1+\sqrt{2}-\sqrt{3}$	C	4	D	$1+\sqrt{2}+\sqrt{3}$	
Q.5.	The value of $729^{\frac{-1}{6}}$								
	A	$\frac{1}{3}$	B	$\frac{-1}{3}$	C	$\frac{1}{6}$	D	$\frac{-1}{6}$	
Q.6.	The value of a and b if $a+b \sqrt{15}=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$								
	A	$a=1, b=4$	B	$a=2, b=1$	C	$a=1, b=2$	D	$a=4, b=1$	
Q.7.	How many linear equations in x and y can be satisfied by $x=1$ and $y=2$								
	A	One	B	Two	C	Infinitely many	D	Ten	
Q.8.	In the given figure, if $l \\| m$, then the value of x is								

	A	35°	B	40°	C	85°	D	95°
Q.9.	The angles of a triangle are in the ratio 3:4:5. The largest angle of the triangle is							
	A	75°	B	60°	C	45°	D	90°
Q. 10	The angle which is half its supplement is							
	A	60°	B	120°	C	110°	D	130°
Q. 11	In the given figure, $\mathrm{AC} \perp \mathrm{BD}$. Find y if $\angle B A C=40^{\circ}$ and $\angle B E D=100^{\circ}$							
	A	30°	B	60°	C	80°	D	45°
Q. 12	In the isosceles triangle ABC , if $\mathrm{AB}=\mathrm{AC}$ and $\angle A=40^{\circ}$, then find the measure of $\angle B$							
	A	40°	B	75°	C	70°	D	140°
Q. 13	If $\triangle A B C \cong \triangle P Q R$, and $\triangle A B C \nsupseteq \triangle R P Q$, then which of the following is not true?							
	A	$B C=P Q$	B	$A C=P R$	C	$A B=P Q$	D	$Q \mathrm{R}=\mathrm{BC}$
Q. 14	In the given figure, $B E=C F$ then,							
	A	$\triangle A B E \cong \triangle A C F$	B	$\triangle A B E \cong \triangle A F C$	C	$\triangle A B E \cong \triangle C A F$	D	$\triangle A E B \cong \triangle A C F$
Q. 15	The equal sides of an isosceles triangle are 12 cm and its perimeter is 30 cm . The area of the triangle is							
	A	$9 \sqrt{15} \mathrm{sq.cm}$	B	$6 \sqrt{15}$ sq.cm	C	$3 \sqrt{15}$ sq.cm	D	$\sqrt{15} \mathrm{sq} . \mathrm{cm}$

Q. 16	Rai use \tan Bas	in water harvesting Amal decided to k at the rate 30 cub sed on above inform i) What will be taken as y c		CASE S is a technology water harvesting. per second. nswer any four uation formed if		1 lects and sto lected rainwa ns: of water co		ter for human underground seconds is
	A	$30 x=y$	B	$X=30 y$	C	$30-x=y$	D	$30+y=x$
ii) What is the type of solution of the equation formed?								
	A	A unique solution	B	Only two solutions	C	No solution	D	Infinitely many solutions
iii) Write the equation in standard form.								
	A	$30 x-y+0=0$	B	$30 x+y+0=0$	C	$30 x=y$	D	$30 x-y=0$
	iv) How much water will be collected in 60 sec ?							
	A	$1500 \mathrm{~cm}^{3}$	B	$2 \mathrm{~cm}^{3}$	C	$1800 \mathrm{~cm}^{3}$	D	$1 \mathrm{~cm}^{3}$
v) How much time will it take to collect water in $900 \mathrm{~cm}^{3}$?								
	A	20 sec	B	50 sec	C	40 sec	D	30 sec

Q18.		rding to a data, a . According to a r pread awareness provided all school ateral triangle with If the perime	d D de of	CASE S ne and a half lak , mostly acciden affic rules, Delhi lhi the traffic sign a". Answer any the triangle is 180		3: ons die due to due to ignora school initiated ard, indicating " estions: then find the sid	ac of tep OO of th	ident per year in raffic rules. in this matter AHEAD" is an triangle.
	A	40 cm	B	50 cm	C	60 cm	D	70 cm
	ii) Find the value of semi perimeter 's s ".							
	A	70 cm	B	80 cm	C	90 cm	D	100 cm
	iii) If a, b, c are the sides of a triangle, then write the formula to find the perimeter.							
	A	$2 s=a+b+c$	B	$3 s=a+b+c$	C	$s=a+b+c$	D	$4 s=a+b+c$
iv) Find the area of the signal board in the above figure.								
	A	$300 \sqrt{3} \mathrm{~cm}^{2}$	B	$600 \sqrt{3} \mathrm{~cm}^{2}$	C	$900 \sqrt{3} \mathrm{~cm}^{2}$	D	$800 \mathrm{~cm}^{2}$
v) Which message is provided by the above question?								
	A	Charity	B	To help the poor	C	Awareness about traffic rules	D	Neatness campaign

Q19.	CASE STUDY 4: Two classmates Salma and Anil simplified two different expressions during the revision hour and explained to each other their simplifications. Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ by rationalizing the denominator and Anil explains simplifications of $(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$ using the identity $(a+b)(a-b)$. Answer any four questions: i) What is the conjugate of $(\sqrt{5}+\sqrt{3})$?							
	A	$(\sqrt{5}+\sqrt{3})$	B	$(\sqrt{5}-\sqrt{3})$	C	$(\sqrt{5} \times \sqrt{3})$	D	$(\sqrt{5} \div \sqrt{3})$
	ii) By rationalizing the denominator of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ Salma got the answer:							
	A	$\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}$	B	$\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}$	C	$\sqrt{5}-\sqrt{3}$	V	$\frac{\sqrt{2}(\sqrt{5}+\sqrt{3})}{2}$
	iii) Anil applied ___ identity to solve $(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$							
	A	$(a+b)(a+b)$	B	$(a+b)(a-b)$	C	$(a-b)(a-b)$	D	$(x+a)(x+b)$
	iv) $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})=$							
	A	-1	B	1	C	5	D	-5
	v) Addition of two irrational numbers is							
	A	Rational	B	Irrational	C	Integers	D	Whole numbers

Q20.	Assertion (A): A number N when divided by 15 gives the remainder 2 . Then the remainder is same when N is divided by 5 . Reason (\mathbf{R}): $\sqrt{3}$ is an irrational number.						
	Both A and R is true, A $\quad \mathrm{R}$ is the correct explanation of A	B	Both A and R is true, R is not the correct explanation of A	C	A is true but R is false	D	A is false but R is true
Q21.	Assertion (A): The point $(0,4)$ lies on Y-axis Reason (\mathbf{R}): The x-co-ordinate on the point on Y-axis is zero.						
	Both A and R is true, A R is the correct explanation of A	B	Both A and R is true, R is not the correct explanation of A	C	A is true but R is false	D	A is false but R is true
Q22.	Assertion (A): If angles ' a ' and ' b ' form a linear pair of angles and $a=40^{\circ}$, then $b=150^{\circ}$ Reason (R): Sum of linear pair of angles is always 180°						
	Both A and R is true, A $\quad \mathrm{R}$ is the correct explanation of A	B	Both A and R is true, R is not the correct explanation of A	C	A is true but R is false	D	A is false but R is true

Q23.	Age of father is seven years more than three times the present age of the son. The above statement can be expressed in a linear equation as							
	A	$x-3 y-7=0$	B	$x+3 y+7=0$	C	$x+3 y-7=0$	D	$x-3 y+7=0$
Q24.	Find the value of x if $A O B$ is a straight line							
	A	36°	B	60°	C	30°	D	35°
Q25.		given figure, if	1	nd m are parallel,	hen	the value of x is	-	
	A	65°	B	85°	C	45°	D	20°
Q26.								
	A	60°	B	45°	C	120°	D	90°
Q27.	In the given figure, $A B \perp B E=$ and $E F \perp B E$. Also, $B C=D E$ and $A B=E F$. Then							
	A	$\Delta \mathrm{ABD} \cong \triangle \mathrm{FEC}$	B	$\Delta \mathrm{ABD} \cong \triangle \mathrm{EFC}$	C	$\Delta \mathrm{ABD} \cong \triangle \mathrm{CMD}$	D	$\triangle \mathrm{ABD} \cong \triangle \mathrm{CEF}$

Q28．The base of a right triangle is 8 cm and hypotenuse is 10 cm ．its area will be
A
24 sq．cm
B 40 sq．cm
C $48 \mathrm{sq} . \mathrm{cm}$
D 80 sq．cm

Q29．$\sqrt{10} \times \sqrt{15}$ ）is equal to：
A
$6 \sqrt{5}$
B $5 \sqrt{6}$
C $\sqrt{25}$
D $\quad 10 \sqrt{5}$

Q30．Ordinate of all the points on the x－axis is：

\mathbf{A}	0	\mathbf{B}	1	\mathbf{C}	-1	\mathbf{D}	Any number

Q31．If $(2,0)$ is a solution of the linear equation， $2 x+3 y=k$ ，then the value of k is：
A
4
B 6
C 5
D 2

Q32．An exterior angle of a triangle is 105° and its two interior opposite angles are equal．Each of these equal angles is：
A
$37 \frac{1}{2}$ 。
B $52 \frac{1}{2}$ 。
C $72 \frac{1}{2}$ 。
D 75

Q33．Find the area of a triangle whose base is 4 cm and altitude is 6 cm ．
A
$24 \mathrm{~cm}^{2}$
B $48 \mathrm{~cm}^{2}$
C $12 \mathrm{~cm}^{2}$
D $10 \mathrm{~cm}^{2}$

Q34．If the area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$ ，then the perimeter of the triangle is：
A
48 cm
B 24 cm
C 12 cm
D 36 cm

Q35．If one angle of a triangle is equal to the sum of the other two angles，then the triangle is：
A An isosceles triangle
B An obtuse triangle
C
An equilateral
D A right－angle triangle．

Q36．The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long．Then the area of the triangle is：
A
$1322 \mathrm{~cm}^{2}$
B $1311 \mathrm{~cm}^{2}$
C $1344 \mathrm{~cm}^{2}$
D $1392 \mathrm{~cm}^{2}$
Q37．Value of $\sqrt[4]{(81)^{-2}}$ is：

\mathbf{A}	$\frac{1}{9}$	\mathbf{B}	$\frac{1}{3}$	\mathbf{C}	9	\mathbf{D}	$\frac{1}{81}$

Q38．If one of the angles of a triangle is 130° ，then the angle between the bisectors of the other two angles can be：
A
50°
B 65°
C 145°
D 155°

Q39．The equation $x=7$ in two variables can be written as
A $\quad 1 . \mathrm{x}+1 . \mathrm{y}=7$
B $\quad 1 . x+0 . y=7$
C $\quad 0 . x+1 . y=7$
D $0 . x+0 . y=7$

Q40.	$\frac{\sqrt{1}}{\sqrt{9}-\sqrt{8}}$ is equals to:							
	A	$\frac{1}{2}(3-2 \sqrt{2})$	B	$\frac{\sqrt{1}}{3+2 \sqrt{2}}$	C	$(3-2 \sqrt{2})$	D	$(3+2 \sqrt{2})$

