

General Instructions:

1. This question paper contains two parts A and B. Each part is compulsory.
2. Part A carries 32 marks and Part B carries 10 marks.
3. Part-A has Objective Type Questions and Part -B case study-based questions.
4. You may answer any 32 questions from section A and any four sub questions from each question in section B
Part - A:
5. It consists of 39 questions
6. You may answer any 32 questions.

Part - B:

It contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any four sub questions from each case study question.

Section A

Q1.	A man rows 15 km upstream and 25 km downstream in 5 hours each time. What is the speed of the current?							
	A	$1 \mathrm{~km} / \mathrm{h}$	B	$3 \mathrm{~km} / \mathrm{h}$	C	$5 \mathrm{~km} / \mathrm{h}$	D	$2 \mathrm{~km} / \mathrm{h}$
Q2.	A pipe can fill a cistern in 6 hours. Due to a leakage in the tank the cistern is just full in 9 hours. How much time the leakage will take to empty the tank?							
	A	3 hrs	B	6 hrs	C	9 hrs	D	18hrs
Q3.	If $A=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]$ then AB							
	A	is not defined	B	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	C	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$	D	$\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$
Q4.	If A is a square matrix such that $A^{2}=I$, then $(A-I)^{3}+(A+I)^{3}-7 A$ is equal to							
	A	A	B	$I-A$	C	$I+A$	D	3A

Q5.	If the matrix $\left(\begin{array}{ccc}0 & x & 3 \\ 2 & y & -1 \\ z & 1 & 0\end{array}\right)$ is a skew symmetric matrix, then values of x, y and z :							
	A	$\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=0$	B	$\mathrm{x}=2, \mathrm{y}=0, \mathrm{z}=3$	C	$\mathrm{x}=-2, \mathrm{y}=1, \mathrm{z}=-3$	D	$\begin{aligned} & x=-2, y=0 \\ & z=-3 \end{aligned}$
Q6.	If $\mathrm{A}=\left(\begin{array}{lll}5 & 0 & 5 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$, then A is \ldots.							
	A	an identity matrix	B	a null matrix	C	A square matrix	D	a scalar matrix
Q7.	If $\left(\begin{array}{cc}2 x-y & 2 x-1 \\ 5 x-7 & 3 x-4\end{array}\right)=\left(\begin{array}{cc}7 & 7 y \\ 3 x+y & x+4\end{array}\right)$, then value of x and y							
	A	$x=4, y=-1$			B	$x=4, y=1$		
	C	$x=1, y=4$			D	$x=-4, y=1$		
Q8.	If the demand function $p(x)=20-\frac{x}{2}$ then the marginal revenue when $x=10$							
	A	₹ 10	B	₹ 15	C	₹ 20	D	₹ 25
Q9.	The value of $\left\|\begin{array}{ccc}3 & 10 & 103 \\ 5 & 9 & 95 \\ 7 & 5 & 57\end{array}\right\|$							
	A	1	B	0	C	255	D	none of these
Q10.	Which of the following statement is/are correct? a) Matrix multiplication is not commutative b) Determinant is a number associated to a square matrix c) All square matrices are symmetric matrices d) If any two rows of a determinant are interchanged, then the value remains unchanged.							
	A	a) and b)	B	a) and d)	C	Only c)	D	None of the statements

Q17	Akshay started a business by investing ₹ 40000 After 4 months Ashwin joined his business and invested ₹ 50000 The share of Ashwin in the profit if they earn ₹ 220000 as profit in the entire year							
	A	$₹ 120000$	B	₹ 110000	C	$₹ 100000$	D	₹ 90000
Q18	The total revenue in ₹ received from the sale of x units of a product is given by $R(x)=3 x^{2}+36 x+5$. The marginal revenue, when $\mathrm{x}=15$							
	A	₹ 116	B	₹ 96	C	₹ 90	D	₹ 126
Q19	In a 1000 metres race. A, B, and C get the gold, silver, and bronze medals, respectively. If A beats B by 100 metres and B beats C by 100 metres, then by how many metres does A beat C ?							
	A	190 m	B	200 m	C	300 m	D	100 m
Q20	If $a>b$ and $c<0$ the which of the following are true? (i) $a c>b c$ (ii) $a+c<b+c$ (iii) $a-c>b-c$							
	A	(i)	B	(i)and (ii)	C	(iii)only	D	None of these
Q21	What time will it be after 200 hours, if the present time is 5:00 am?							
	A	5:00 am	B	5:00 pm	C	1:00pm	D	1:00am
Q22	Two pipes A and B can fill a tank in 24 minutes and 32 minutes respectively. If both the pipes are opened simultaneously, after how much time B should be closed so that the tank is full in 18 minutes?							
	A	10 minutes	B	8 minutes	C	6 minutes	D	4 minutes
Q23	The probability of an event A occurring is 0.4 and of B is 0.5 . If A and B are mutually exclusive events, then find the probability of neither A nor B.							
	A	0.4	B	0.1	C	0.3	D	0.2

Q24	The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is							
	A	1		2		5		$\frac{8}{3}$
Q25	Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of $E(X)$ is							
	A	$\frac{37}{221}$	B	$\frac{5}{13}$	C	$\frac{1}{13}$	D	$\frac{2}{13}$
Q26	A die is thrown 6 times. If 'getting an odd number' is a success, what is the probability of 5 successes?							
	A	$\frac{1}{64}$	B	$\frac{3}{32}$	C	$\frac{63}{64}$		$\frac{21}{64}$
Q27	In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is							
	A	10^{-1}	B	$\left(\frac{1}{2}\right)^{5}$	C	$\left(\frac{9}{10}\right)^{5}$	D	$\frac{9}{10}$
Q28 Suppose X has a binomial distribution B(6, $1 / 2$), then the most likely outcome is								
	A	$\mathrm{X}=2$	B	$\mathrm{X}=3$	C	$\mathrm{X}=4$	D	$\mathrm{X}=5$
Q29	A and B throw a die alternatively till one of them gets a ' 6 ' and wins the game. Find the probability of A wins, if A starts first							
	A	$\frac{6}{11}$	B	$\frac{5}{11}$	C	$\frac{2}{5}$	D	$\frac{2}{25}$

Q30	The random variable X has a probability distribution $\mathrm{P}(\mathrm{X})$ of the following form, where k is some number: $P(x)=\left\{\begin{array}{l} k, \text { if } x=0 \\ 2 k, \text { if } x=1 \text { and } \mathrm{P}(\mathrm{x})=0 \text { otherwise } \\ 3 k, \text { if } x=2 \end{array}\right.$ Determine the value of k							
	A	$\frac{1}{6}$	B	$\frac{5}{11}$	C	$\frac{2}{5}$	D	$\frac{1}{5}$
Q31 What is the remainder when $783 \times 657 \times 594 \times 432 \times 346 \times 251$ is divided by 5								
	A	0	B	1	C	2	D	3
Q32 If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)$ then								
	A	$\left(\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right)$	B	$\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$	C	$\left(\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right)$	D	$\left(\begin{array}{cc}-1 & -2 \\ 3 & 5\end{array}\right)$
Q33	If $\mathrm{A}(3,5), \mathrm{B}(4,7)$ and $\mathrm{C}(0, \mathrm{k})$ are collinear, then $\mathrm{k}=$							
	A	0	B	1	C	-1	D	2
Q34	The CP of type 1 rice is ₹ 60 per Kg and that of type 2 is ₹ 80 per Kg If both are mixed in the ratio $2: 3$ then the price per Kg of the mixed rice is ₹							
	A	70	B	75	C	65	D	72
Q35	How many times a fair coin to be tossed so that the probability of getting at least one head is more than 90\%							

	A	1	B	2	C	3	D	4
Q36 If the mean and variance of a binomial distribution is $\frac{3}{2}$ and $\frac{3}{4}$ then $\mathrm{P}($								
	A	$\frac{3}{8}$	B	$\frac{3}{4}$	C	$\frac{1}{8}$	D	$\frac{1}{2}$
Q37	The statement given below has been followed by two conclusions. Statement: $\boldsymbol{b} \leq \boldsymbol{d}>\boldsymbol{e} \leq \boldsymbol{a}=\boldsymbol{f}>\boldsymbol{c}$ Conclusion I: $e<f$. Conclusion II: $e=f$ Then which of the following is true?							
	A	I is true II is false	B	Either I or II is true	C	I is false and II is true	D	Both I and II are false
Q38	(i) Statement: The local minimum value of $f(x)=x^{3}-3 x$ is at $x=1$ and local minimum value $=-2$. (ii) Reason: The point ' c ' is a point of local minimum if $\mathrm{f}^{\prime}(\mathrm{c})=0$ and f " $(\mathrm{c})>0$ and we say $\mathrm{f}(\mathrm{c})$ is a local minimum value of $f(x)$							
	A	Both (i) and (ii) are correct	B	Only (i) is correct	C	Only(ii) is correct	D	Both (i) and (ii) are false
Q39	Which of the following statements are correct? (i) If A and B are independent events $P(A \cap B)=0$ (ii) If A and B are independent events $P(A \cap B)=P(A) P(B)$ (iii) If A and B are mutually exclusive events $P(A \cap B)=0$ (iv) If A and B are mutually exhaustive events $P(A U B)=1$							
	A	(i)only	B	(i)(ii) (iii) and (iv)	C	(ii), (iii) and (iv)	D	None of these

Section- II

Case study-based questions are compulsory. Attempt any four from each question (39 to 40)
Q40. A gardener wants to construct a rectangular garden in a circular path of land. He takes the maximum perimeter of the rectangular region as possible.

Based on the above information answer the following:
(i) If $\mathrm{QR}=\mathrm{x}$ and R be the radius of the land, then the perimeter of rectangle PQRS
A $\quad 2 x+2 \sqrt{R^{2}-x^{2}}$
B $\quad 2(x+R)$
C $\quad x \sqrt{R^{2}-x^{2}}$
D $\quad 2 x+2 \sqrt{4 R^{2}-x^{2}}$
(ii) If A represents the area of rectangle then to find maximum area of rectangle
A $\quad \frac{d A}{d x}=0$
B $\quad \frac{d A}{d R}=0$
C $\quad \frac{d A}{d x} \leq 0$
D $\quad \frac{d R}{d x} \geq 0$
(iii) Area of the rectangle is maximum when
A $\quad x=R$
B $\quad x=\sqrt{2} R$
C $x=\frac{R}{\sqrt{2}}$
D
$x=\sqrt{3} R$
(iv) Area is maximum when the quadrilateral is
A
a square
B $\quad \underset{\text { parallelogram }}{\text { a }}$
C a trapezium
D a rectangle
(v) What is the maximum area of PQRS when radius is 10 m ?
A $\quad 100$ sq. m.
B $\quad 200$ sq. m
C 50 sq.m
D $\quad 400$ sq. m

Q41. On his birthday Hari decided to donate some money to children of an orphanage home. If there were 10 children less, everyone would have got ₹ 30 more. However, if there were 10 children more, everyone would have got ₹ 20 less.

Based on the above information answer the following:
(i) The algebraic equations in terms of x and y are
A $\mathrm{x}+\mathrm{y}=30 ; \mathrm{x}-\mathrm{y}=20$
B
$3 x-y=30$;
C $\begin{aligned} & x-3 y=30 ; \\ & x-2 y=-20\end{aligned}$
D $\quad \begin{gathered}x+3 y=300 ; \\ 2 x+y=20\end{gathered}$
$2 x-y=-20$
(ii) Which of the following represents the matrix form of the algebraic equations?
A $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}=\binom{30}{-20}$
B $\quad\left(\begin{array}{ll}3 & -1 \\ 2 & -1\end{array}\right)\binom{x}{y}=\binom{30}{-20}$
C $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}=\binom{30}{-20}$
D $\quad\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}30 \\ -20 .\end{array}\right.$
iii) The number of students in the orphanage is
A 20
B
30
C
40
D
50
iv) Amount received by each child is ₹ \qquad
A
90
B
100
C
120
D
150
v) Total amount donated ₹ \qquad
A 6000
B 5000
C 7500
D 10000

1.	A	11.	C	21.	C	31.	D	40.(i)	D
2.	D	12.	D	22.	B	32.	A	40(ii)	A
3.	D	13.	D	23.	B	33.	C	40(iii)	B
4.	A	14.	A	24.	B	34.	D	40(iv)	A
5.	D	15.	B	25.	D	35.	D	40(v)	B
6.	C	16.	C	26.	B	36.	A	41(i)	B
7.	B	17.	A	27.	C	37.	B	41(ii)	B
8.	A	18.	D	28.	B	38.	A	41(iii)	D
9.	B	19.	A	29.	A	39	C	41(iv)	C
10.	A	20	C	30.	A			41(v)	A

