

INDIAN SCHOOL AL WADI AL KABIR Department: APPLIED Mathematics

Class XII

Sample Question Paper 29-08-2021

General Instructions:

- 1. This question paper contains two parts A and B. Each part is compulsory.
- 2. Part A carries 32 marks and Part B carries 10 marks.
- *3.* Part-A has Objective Type Questions and Part -B case study-based questions.
- 4. You may answer any 32 questions from section A and any four sub questions from each question in section B

Part – A:

- 1. It consists of 39 questions
- 2. You may answer any 32 questions.

Part – B:

It contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any four sub questions from each case study question.

				Sectio	n A							
Q1.		nan rows 15 km up rent?	strea	um and 25 km dow	vnsti	ream in 5 hours each ti	me.	What is the speed of the				
	A	1km/h	B	3km/h	C	5km/h	D	2 km/h				
Q2.	-	A pipe can fill a cistern in 6 hours. Due to a leakage in the tank the cistern is just full in 9 hours. How nuch time the leakage will take to empty the tank?										
	Α	A 3 hrs B 6 hrs C 9 hrs D 18 hrs										
Q3.	If.	$If A = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} and B = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} then AB$										
	А •	is not defined	В	[1 0 0]	C ·	$\begin{bmatrix} 1\\0\\0\end{bmatrix}$	D	$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$				
Q4.	If A	A is a square matrix	such	h that $A^2 = I$, then								
	(A	$(A - I)^3 + (A + I)^3 - 7A$ is equal to										
	A	AB $I-A$ C $I+A$ D3A										

Q5.	If t	he matrix $\begin{pmatrix} 0 & x \\ 2 & y \\ z & 1 \end{pmatrix}$	3 \ -1 0 /	is a skew symm	neti	ric matrix, then						
	va	lues of x, y and z	:									
	A	x=0, y = 1, z= 0	В	x=2, y=0, z= 3	C	x=-2, y=1, z= -3	D	x= -2, y= 0, z= -3				
Q6.	If A	$\mathbf{A} = \begin{pmatrix} 5 & 0 & 5 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ the}$	en A	is								
	A	an identity matrix	B	a null matrix	С	A square matrix	D	a scalar matrix				
Q7.	If	$f\begin{pmatrix} 2x-y & 2x-1\\ 5x-7 & 3x-4 \end{pmatrix} = \begin{pmatrix} 7 & 7y\\ 3x+y & x+4 \end{pmatrix}, \text{ then value of } x \text{ and } y$										
	A	A $x = 4, y = -1$ B $x = 4, y = 1$										
	С	x = 1	L, y :	= 4	D	<i>x</i> =	: -4	$\mathbf{k}, \mathbf{y} = 1$				
Q8.	If	the demand func	tion	$p(x) = 20 - \frac{x}{2} t$	hen	the marginal reven	ue	when $x = 10$				
	Α	₹10	B	₹15	C	₹20	D	₹ 25				
Q9.	Th	e value of 3 10 5 9 7 5	10 9 5	13 5 7	, ,	L						
	A	1	В	0	C	255	D	none of these				
Q10.	W	 Which of the following statement is/are correct? a) Matrix multiplication is not commutative b) Determinant is a number associated to a square matrix c) All square matrices are symmetric matrices d) If any two rows of a determinant are interchanged, then the value remains unchanged. 										
	A	a) and b)	В	a) and d)	С	Only c)	D	None of the statements				

Q11.	If	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+x +x -x	= 0, then the va	lue	s of x			
	A	0 or 3	В	0 or 9	C	0 or -9		D	3 or 9
Q12.	Fo	r the two-sector eq	conor	my input- output	tab	le is given be	elow. Fin	d th	e technology matrix.
		Output →		Industry 1]	ndustry 2	Fina Demai		Total output
		Input↓					Dema	lu	
		Industry 1		14		6	8		28
		Industry 2		7		18	11 36		
	A	$\begin{pmatrix} 1_{2} \\ 7 \end{pmatrix}$	4 (1	6 8)	В		$\begin{pmatrix} \frac{1}{2} & \frac{3}{14} \\ \frac{7}{11} & \frac{1}{2} \end{pmatrix}$		
	C			D				$\begin{pmatrix} \frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{2} \end{pmatrix}$	
Q13	If	$\begin{bmatrix} x + y + z \\ x + y \\ y + z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix} t$	then	x - y + z =					
	Α	0	B	1	C	2		D	3
Q14	If y	$v = \left(x + \sqrt{x^2 + a^2}\right)$	$(p)^n, p$	prove that $\frac{dy}{dx}$					
	A	$\frac{ny}{\sqrt{x^2 + a^2}}$	B	ny	С	$\frac{ny}{x + \sqrt{x^2}}$	$+ a^2$	D	$\frac{n}{y\sqrt{x^2+a^2}}$
Q15	If:	$x=at^2, y=4at, t$	ther	$n \frac{dy}{dx}$ at t= 2					
	Α	0	В	1		2		D	$\frac{1}{2}$
Q16		B and C enter into a ch as B and C toget	-	-			-	al w	hile A contributes as
	Α	1:2:3	B	2:3:1	С	3:2:1	l	D	3:1:2

Q17		•				After 4 months Ashwi fit if they earn ₹ 22000		ined his business and s profit in the entire year			
	Α	₹ 120000	B	₹110000	C	₹ 100000	D	₹ 90000			
Q18		total revenue in \mathbf{x} (x) = $3x^2 + 36x$				x units of a product is g ue, when $x = 15$	give	n by			
	Α	₹116	B	₹96	C	₹ 90	D	₹126			
Q19						silver, and bronze med ten by how many metre		respectively. If A beats oes A beat C?			
	A	190m	B	200m	С	300 <i>m</i>	D	100m			
Q20	If a	f $a > b$ and $c < 0$ the which of the following are true? (i) $ac > bc$ (ii) $a + c < b + c$ (iii) $a - c > b - c$									
	Α	A(i)B(i)and (ii)C(iii)onlyDNone of these									
Q21	Wh	at time will it be af	ter 2	00 hours, if the pr	esei	nt time is 5:00 am?					
	Α	5:00 am	B	5:00 pm	С	1:00pm	D	1:00am			
Q22						-		rely. If both the pipes are tank is full in 18 minutes?			
	Α	10 minutes	B	8 minutes	С	6 minutes	D	4 minutes			
Q23		The probability of an event A occurring is 0.4 and of B is 0.5. If A and B are mutually exclusive events, then find the probability of neither A nor B.									
	Α	A 0.4 B 0.1 C 0.3 D 0.2									

Q24		mean of the numb and 5 on one fac		obtained on throwi	ng a	a die having written 1 o	on tł	nree faces, 2 on two						
	Α	1		2		5		$\frac{8}{3}$						
Q25		oose that two cards ined. Then the val			fror	n a deck of cards. Let 2	X be	e the number of aces						
	A	A $\frac{37}{221}$ B $\frac{5}{13}$ C $\frac{1}{13}$ D $\frac{2}{13}$												
Q26		A die is thrown 6 times. If 'getting an odd number' is a success, what is the probability of 5 uccesses?												
	A	A $\frac{1}{64}$ B $\frac{3}{32}$ C $\frac{63}{64}$ $\frac{21}{64}$												
Q27		box containing 10 is defective is	0 bu	lbs, 10 are defectiv	ve. '	The probability that ou	t of	a sample of 5 bulbs,						
	A	10 ⁻¹	B	$\left(\frac{1}{2}\right)^5$	С	$\left(\frac{9}{10}\right)^5$	D	$\frac{9}{10}$						
Q28	Supp	oose X has a binor	nial	distribution B(6, 1	/2),	then the most likely o	utco	me is						
	A	X=2	В	X= 3	С	X=4	D	X=5						
Q29		A and B throw a die alternatively till one of them gets a '6' and wins the game. Find the probability of A wins, if A starts first												
	A	$\frac{6}{11}$	B	5 11	С	<u>2</u> 5	D	$\frac{2}{25}$						

Q30		e random variable Σ nber:	K has	s a probability dist	ribu	tion P(X) of the follow	ving	form, where k is some						
	P(x	$f(x) = \begin{cases} k, if \ x = 0\\ 2k, if \ x = 1\\ 3k, \ if \ x = 2 \end{cases}$	and 2	d P(x)=0 otherwise	;									
	Det	ermine the value of	f k	1										
	A	A $\frac{1}{6}$ B $\frac{5}{11}$ C $\frac{2}{5}$ D $\frac{1}{5}$												
Q31	Wh	What is the remainder when $783 \times 657 \times 594 \times 432 \times 346 \times 251$ is divided by 5												
	A	$\mathbf{A} 0 \qquad \mathbf{B} 1 \qquad \mathbf{C} 2 \qquad \mathbf{D} 3$												
Q32	If 2	$If A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \text{ then } A^{-1}$												
	A	$\begin{pmatrix} -5 & 2\\ 3 & -1 \end{pmatrix}$	В	$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$	С	$\begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$	D	$\begin{pmatrix} -1 & -2 \\ 3 & 5 \end{pmatrix}$						
Q33	If A	A (3, 5), B (4, 7) and	dC((0, k) are collinear,	the	n k=								
	A	0	В	1	С	-1	D	2						
Q34		The CP of type 1 rice is ₹ 60 per Kg and that of type2 is ₹ 80 per Kg If both are mixed in the ratio 2:3 then the price per Kg of the mixed rice is ₹												
	A	A 70 B 75 C 65 D 72												
Q35		w many times a fai n 90%	r coi	n to be tossed so th	nat t	he probability of gettin	ng at	t least one head is more						

	Α	1	В	2	С	3	D	4		
Q36	If t	he mean and varian	ce o	f a binomial distrib	outi	on is $\frac{3}{2}$ and $\frac{3}{4}$ then P(x=	=1)			
	Α	$\frac{3}{8}$	В	$\frac{3}{4}$	С	$\frac{1}{8}$	D	$\frac{1}{2}$		
Q37	Sta Co	The statement given below has been followed by two conclusions.Statement: $b \le d > e \le a = f > c$ Conclusion I: $e < f$.Conclusion II: $e = f$ Then which of the following is true?								
	Α	I is true II is false	В	Either I or II is true	С	I is false and II is true	D	Both I and II are false		
Q38	The (ii)		ulue (pint '	c' is a point of local		at x = 1 and local m imum if f '(c) = 0 and f "		$mum \ value = -2.$ 0 and we say f(c) is a local		
	Α	Both (i) and (ii) are correct	В	Only (i) is correct	С	Only(ii) is correct	D	Both (i) and (ii) are false		
Q39	Wł	Which of the following statements are correct? (i) If A and B are independent events $P(A \cap B) = 0$ (ii) If A and B are independent events $P(A \cap B) = P(A)P(B)$ (iii) If A and B are mutually exclusive events $P(A \cap B) = 0$ (iv) If A and B are mutually exhaustive events $P(AUB) = 1$								
	Α	(i)only	В	(i)(ii) (iii) and (iv)	С	(ii), (iii) and (iv)	D	None of these		

Section- II

Case study-based questions are compulsory. Attempt any four from each question (39 to 40)

Q40. A gardener wants to construct a rectangular garden in a circular path of land. He takes the maximum perimeter of the rectangular region as possible.

Based on the above information answer the following:

(i) If QR = x and R be the radius of the land, then the perimeter of rectangle PQRS

A
$$2x + 2\sqrt{R^2 - x^2}$$
 B $2(x + R)$ **C** $x\sqrt{R^2 - x^2}$ **D** $2x + 2\sqrt{4R^2 - x^2}$

(ii) If A represents the area of rectangle then to find maximum area of rectangle

A
$$\frac{dA}{dx} = 0$$
 B $\frac{dA}{dR} = 0$ C $\frac{dA}{dx} \le 0$ D $\frac{dR}{dx} \ge 0$

(iii) Area of the rectangle is maximum when

A
$$x = R$$
 B $x = \sqrt{2}R$ **C** $x = \frac{R}{\sqrt{2}}$ **D** $x = \sqrt{3}R$

(iv) Area is maximum when the quadrilateral is

Α	a square	В	a parallelogram	С	a trapezium	D	a rectangle
---	----------	---	--------------------	---	-------------	---	-------------

(v) What is the maximum area of PQRS when radius is 10m?

Α	100 sq. m.	В	200 sq. m	С	50sq.m	D	400 sq. m
---	------------	---	-----------	---	--------	---	-----------

Q41. On his birthday Hari decided to donate some money to children of an orphanage home. If there were 10 children less, everyone would have got ₹ 30 more. However, if there were 10 children more, everyone would have got ₹ 20 less.

Based on the above information answer the following:

- (i) The algebraic equations in terms of x and y are
 - **A** x + y = 30; x y = 20 **B** $\begin{array}{c} 3x y = 30; \\ 2x y = -20 \end{array}$ **C** $\begin{array}{c} x 3y = 30; \\ x 2y = -20 \end{array}$ **D** $\begin{array}{c} x + 3y = 300; \\ 2x + y = 20 \end{array}$
- (ii) Which of the following represents the matrix form of the algebraic equations?
 - $\mathbf{A} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{B} \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{C} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ -20 \end{pmatrix} \quad \mathbf{D} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix}$
- iii) The number of students in the orphanage is

	A	20		В	30	С	40	D	50
iv)	Amo	ount rece	eived by eac	h child i	s ₹				
	A		90	В	100	С	120	D	150

v) Total amount donated ₹_____

Α	6000

B 5000

C 7500

D 10000

1.	Α	11.	С	21.	С	31.	D	40.(i)	D
2.	D	12.	D	22.	В	32.	Α	40(ii)	Α
3.	D	13.	D	23.	В	33.	С	40(iii)	В
4.	Α	14.	Α	24.	В	34.	D	40(iv)	Α
5.	D	15.	В	25.	D	35.	D	40(v)	В
6.	С	16.	С	26.	В	36.	Α	41(i)	В
7.	В	17.	Α	27.	С	37.	В	41(ii)	В
8.	Α	18.	D	28.	В	38.	Α	41(iii)	D
9.	В	19.	Α	29.	Α	39	С	41(iv)	С
10.	Α	20	С	30.	Α			41(v)	Α