
Python Programming

PYTHON

•Python is an object-oriented programming
language created by Guido Rossum in the year
1989. The language platform aims at simplifying
the complex applications. The Python scripts are
stored in files which are named with the
extension .py.

What is Python

• Python is a high-level programming language which is:

• Interpreted: Python is processed at runtime by the interpreter.

• Interactive: You can use a Python prompt and interact with the
interpreter directly to write your Programs.

• Object-Oriented: Python supports Object-Oriented technique of
programming.

• Beginner’s Language: Python is a great language for the beginner-
level programmers and supports the development of a wide range of
applications.

Python Features

• Easy to learn, easy to read and easy to maintain.

• Portable: It can run on various hardware platforms and has the same
interface on all platforms.

• Extendable: You can add low-level modules to the Python interpreter.

• Scalable: Python provides a good structure and support for large
programs.

• Python has support for an interactive mode of testing and debugging.

• Python has a broad standard library cross-platform.

• Everything in Python is an object: variables, functions, even code.
Every object has an ID, a type, and a value

Python interface

• Python has interfaces to many operating systems such as Windows,
Linux, Unix, etc. Also, it is extensible to languages such as C and C++.
Giants such as NASA, Google, YouTube, Bit Torrent use Python
extensively in various projects.

• The latest version of Python, i.e. Python 3, is being widely used in
artificial intelligence, natural language generation, neural networks
and other advanced fields of computer

TOKENS

•A token is the smallest element of a
program that is meaningful to the
interpreter. Tokens supported in
python include identifier, keywords
delimiter and operator

identifiers

• Identifiers can be a combination of letters in lowercase (a to z) or
uppercase (A to Z) or digits (0 to 9) or an underscore _ .

• An identifier cannot start with a digit.

• Keywords cannot be used as identifiers.

• We cannot use special symbols like !, @, #, $, % etc.

• An identifier can be of any length.

• An identifier is a name given to entities like class, functions, variables,
etc. It helps to differentiate one entity from another.

Creating Variables

Python has no command for declaring a variable.
A variable is created the moment you first assign a value to it.

Example
x = 5
y = "John"
print(x)
print(y)
Try it Yourself »
Variables do not need to be declared with any particular type, and can even
change type after they have been set.

Example
x = 4 # x is of type int
x = "Sally" # x is now of type str
print(x)

Casting
• If you want to specify the data type of a variable, this can be done with casting.

• Example
x = str(3) # x will be '3'
y = int(3) # y will be 3
z = float(3) # z will be 3.0

Get the Type
You can get the data type of a variable with the type() function.

Example
x = 5
y = "John"
print(type(x))
print(type(y))

Declaration of string variables

• String variables can be declared either by using single or double
quotes:

• Example

• x = "John"
is the same as
x = 'John'

Keywords

•Keywords are the reserved words in python
and cannot be used as constant or variable
or any other identifier names

KEYWORDS

• Keywords are the words that convey a special meaning to the
language compiler/interpreter. These are reserved for special purpose
and must not be used as normal identifier names

false assert del for in or

while none break elif from is

with true class else global and

continue except if nonlocal return def

LITERALS/VALUES

• Literals (often referred to as constant-values) are data
items that have fixed value.

•Python allows several kinds of Literals:
• String literals
• Numeric literals
• Boolean literals
• Special literal None

Simple Input and Output

x=10

print x

x=“hello world”

print x

Using input function in python
name=input()

email=input()

print ("hi",name,email)

Number System
• Binary(0,1) only machine language

• Octal (0-7)

• Decimal (0-9)

• Hexa decimal (0-9, A-F)10+6=16 (hex) –keyword for conversion

• Divided by 16

• Converting of Decimal into binary (bin) –keyword for conversion

• Divided by 2

• Converting of Decimal into Octal (oct) –keyword for conversion

• Divided by 8

Conversion of values into different datatypes

var =10

y=bin(var)

print(y)

var =10

y=hex(var)

print(y)

Operators in Python

Operators are tokens that trigger some
computation when applied to variables and
other objects in an expression . Variables
and objects to which the computation is
applied are called operands

Operators

• Python Operators

• Operators are used to perform operations on variables and values.

• In the example below, we use the + operator to add together two
values:

• Example

• print(10 + 5)

Types of operators
• Unary Operators : operators that requires one operand to operate upon

+5 , -5, not 5,~ complement

• Binary operators: operators that required two operands to operate upon.
• Arithmetic Operators

• Relational operators

Logical operators
and Logical AND or Logical OR

5+10 addition 5*10 Multiplication 10/5 Division

5-10 subtraction 10%5 Modulus/Remainder 5**2 Exponent (raise to power

5<10 Less than 5<=10 Less than or equal to 10>5 Greater than

10>=5 Greater than or equal to 10!=5 Equal to 5==10 Equal to

Python divides the operators in the following
groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Identity operators

• Membership operators

• Bitwise operators

Python Arithmetic Operators

• Arithmetic operators are used with numeric values to perform common
mathematical operations:

• Operator Name Example

• + Addition x + y

• - Subtraction x - y

• * Multiplication x * y

• / Division x / y

• % Modulus x % y

• ** Exponentiation x ** y

• // Floor divisionx // y

Program using Arithmetic operators (sum)

x=int(input())

y=int(input())

sum=x+y

print(sum)

age=int(input())

Print(“after 20years”,age+20)

Program using Arithmetic operators (Difference)

x=int(input())

y=int(input())

difference=x-y

print(difference)

age=int(input())

Print(“my age before 10 years”,age-10)

Write a program to read distance in miles and print in kilometers

m=float(input())

km=1.609*m

print(“The distance is calculated in kilometres”,km)

ft=float(input())

m=ft/3.2808

print(“ The distance calculated in meter”, m)

Write a program to read distance in feet and print in meters

Find the given number is odd or even

x=int(input())

y=x%2

print(“if y is zero then it is even number”,y)

print(“if y is one then it is odd number”, y)

Write a program to find power of given value

x=int(input())

y=x**2

Print(“The square value of x is=“ , y)

f=float(input())

c=(f-32)*5/9

print(“ The temperature measured in Fahrenheit is”,f , “The value of
converted temperature in Celsius is”, c)

Write a program to calculate Fahrenheit to Celsius?

p=float(input())

r=int(input())

n=float(input())

si=(p*r*n)/100

print(“ simple interest for given principal “,p, ”rate of interest”,r,
“number of years”, n “is”,si)

Write a program to find simple interest

Area of a circle

r=int(input())

a=22/7*r**2

print(“area of a circle is”,a)

Simple calculator

x=int(input())

y=int(input())

Print(“sum=“,x+y, “diff”,x-y, “multiplication=“ , x*y, “division=“,x/y)

Write a program to read distance in miles and
print in kilometers
m=23

km=1.609*m

print(km)

Logical operators Definition

•There are three logical operators that are
used to compare values. They evaluate
expressions down to Boolean values,
returning either True or False . These
operators are and , or , and not and are
defined in the table below

LOGICAL OPERATORS

OPERATOR DESCRIPTION SYNTAX EXAMPLE

and
Logical AND: True if both the operands
are true

x and y x < 5 and x < 10

or
Logical OR: True if either of the operands
is true

x or y x < 5 or x < 4

not Logical NOT: True if operand is false not x
not(x < 5 and x <
10)

Logical AND operator

• Logical operator returns True if both the operands are True else it
returns False

Logical or operator
Logical or operator returns True if either of the
operands is True.

Logical not operator

• Logical not operator work with the single boolean value. If the
boolean value is True it returns False and vice-versa.

Python Conditions and If statements
• Python supports the usual logical conditions from mathematics:

• Equals: a == b

• Not Equals: a != b

• Less than: a < b

• Less than or equal to: a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

• These conditions can be used in several ways, most commonly in "if
statements" and loops.

• An "if statement" is written by using the if keyword.

EXAMPLE OF IF STATEMENT

a = 333

b = 200

if b > a:

print("b is greater than a") (THIS STATEMENT INDENTATION which is

used to represent it belongs to if statement or if condition)

Python if Statement Flowchart

What is if...else statement in Python?

• Decision making is required when we want to execute a code only if a
certain condition is satisfied.

• The if……else statement is used in Python for decision making.

• Python if Statement Syntax

if test expression:

statement(s)

Syntax of if...else

if test expression:

Body of if

else:

Body of else

Elif

• The elif keyword is pythons way of saying "if the previous conditions
were not true, then try this condition".

Example

• a = 33
b = 33
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")

Else

• The else keyword catches anything which isn't caught by the preceding
conditions.

Example

a = 200
b = 33
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")
else:

print("a is greater than b")

And

• The and keyword is a logical operator, and is used to combine conditional
statements:

Example

Test if a is greater than b, AND if c is greater than a:

a = 200

b = 33

c = 500

if a > b and c > a:

print("Both conditions are True")

Or - operator

• The or keyword is a logical operator, and is used to combine conditional
statements:

Example

Test if a is greater than b, OR if a is greater than c:

a = 200

b = 33

c = 500
if a > b or a > c:

print("At least one of the conditions is True")

Nested If
• You can have if statements inside if statements, this is called nested if

statements.

• Example
num = float(input("Enter a number: "))
if num >= 0:

if num == 0:
print("Zero")

else:
print("Positive number")

else:
print("Negative number")

The pass Statement

• if statements cannot be empty, but if you for some reason have an if
statement with no content, put in the pass statement to avoid getting an
error.

• Example

a = 33

b = 200

if b > a:

pass

Python Booleans
• Booleans represent one of two values: True or False.

Boolean Values

• In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two answers, True or False.

When you compare two values, the expression is evaluated and Python returns the Boolean
answer:

Example

print(10 > 9)

print(10 == 9)

print(10 < 9)

Example
Print a message based on whether the condition is True or False:

a = 200
b = 33

if b > a:
print("b is greater than a")

else:
print("b is not greater than a")

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give you True
or False in return,

Example

Evaluate a string and a number:

print(bool("Hello"))

print(bool(15))

Evaluate two variables:

x = "Hello"
y = 15

print(bool(x))
print(bool(y))

Most Values are True

Almost any value is evaluated to True if it has some sort of content.

Any string is True, except empty strings.

Any number is True, except 0.

