				INDIAN SCHOOL AL WADI AL KABIR CLASS IX, MATHEMATICS REVISION MID TERM 26-08-2021				
OBJECTIVE TYPE QUESTIONS								
Q.1.	Which point lies on the x - axis :							
	A	$(0,2)$	B	$(-3,2)$	C	$(2,0)$	D	$(-1,-2)$
Q.2.	How many straight lines can be drawn through two given lines:							
	A	None	B	Only 1	C	Two	D	Three
Q.3.	What is the area of an equilateral triangle with side 2 cm :							
	A	$\sqrt{6} \mathrm{Cm}^{2}$	B	$\sqrt{3} \mathrm{Cm}^{2}$	C	$\sqrt{4} \mathrm{Cm}^{2}$	D	$4 \mathrm{Cm}^{2}$
Q.4.	The edges of a triangle are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10cm. Find the area of the triangle :							
	A	$36 \mathrm{Cm}^{2}$	B	$24 \mathrm{Cm}^{2}$	C	$17 \mathrm{Cm}^{2}$	D	$52 \mathrm{~cm}^{2}$
Q.5.	$\sqrt{9}$ is a -------- number							
	A	Rational	B	Irrational	C	Neither rational nor irrational	D	None of these
Q.6.	Two parallel lines intersect at :							
	A	One point	B	Two points	C	Three points	D	Never intersect
Q.7.	$\sqrt{6} \times \sqrt{27}$ is equal to :							
	A	$9 \sqrt{2}$	B	$3 \sqrt{3}$	C	$2 \sqrt{2}$	D	$9 \sqrt{3}$
Q.8.	The perimeter of an equilateral triangle is 60 cm . Then its area is :							
	A	$10 \sqrt{3} \mathrm{~cm}{ }^{2}$	B	$15 \sqrt{3} \mathrm{Cm}^{2}$	C	$20 \sqrt{3} \mathrm{~cm}^{2}$	D	$100 \sqrt{3} \mathrm{~cm}^{2}$
Q.9.	The points (-4, -8) lies in :							
	A	First quadrant	B	Second quadrant	C	Third quadrant	D	Fourth quadrant

Q.10.	What is the minimum number of lines required to make a closed figure :							
	A	One	B	Two	C	Three	D	Four ${ }^{-}$
Q.11.	Which of the following is an irrational number							
	A	$\sqrt{16}$	B	$\sqrt{\frac{12}{4}}$	C	$\sqrt{12}$	D	$\sqrt{100}$
Q.12.	Two angles whose sum is 180° are called:							
	A	Vertically opposite	B	Complementary	C	Adjacent	D	Supplementary
Q.13.	How many lines can pass through one point:							
	A	One	B	Two	C	Three	D	Infinite
Q.14.	Abscissa of all the points on y - axis is							
	A	1	B	Any number	C	0	D	-1
Q.15.	Sum of the measures of an angle and its vertically opposite angles is always :							
	A	Zero	B	Thrice the measure of original angle	C	Double the measure of original angle	D	Equal to the measure of original angle

	DESCRIPTIVE TYPE QUESTIONS		
Q.16.	A design is made on a rectangular tile of dimensions $50 \mathrm{~cm} \times 70 \mathrm{~cm}$ as shown in the figure given below. The design shows eight triangles each of sides $26 \mathrm{~cm}, 17 \mathrm{~cm}$ and 25 cm . Find the total are of the design and the remaining area of the tile.		
Q.17.	The perimeter of rhombus is 146 cm . One of its diagonals is 55 cm . Find the length of the other diagonal and area of the rhombus.		
Q.18.	Find the values of a and $b: \frac{7+\sqrt{5}}{7-\sqrt{5}}-\frac{7-\sqrt{5}}{7+\sqrt{5}}=a+\frac{7}{11} \sqrt{5} b$		
Q.19.	Simplify: $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}$		
Q.20.	Evaluate: $\left(\frac{81}{16}\right)^{\frac{-3}{4}} \times\left\{\left(\frac{9}{25}\right)^{\frac{3}{2}} \div\left(\frac{5}{2}\right)^{-3}\right\}$		
Q.21.	In the figure, if $\mathrm{AB} A B \\| C F$ and $C D \\| F E$, then find the value of x .		

Q.22.	In the below figure $A B C D$ is a quadrilateral in which $\angle A B C=73^{\circ}, \angle C=97^{\circ}$ and $\angle D=110^{\circ}$. If $A E \\| D C$ and $B E \\| A D$ and $A E$ intersects $B C$ at F , find the measure of $\angle E B F$. B							
Q.23.	In the below given figure if $A B \\| C D$ and $E F \\| G H$. Find the values of x, y, z and t.							
Q.24.	Find the coordinates of thee point (i) Which lies on both x and y-axis. (ii) Whose abscissa is 4 and lies on x-axis. (iii) Whose ordinate is -2 and lies on y-axis.							
Q.25.	Plot the points (x, y) given by the following table.							
	x	-1	2	5	6	-3	-5	7
	y	3	4	3	-2	-1	-2	1

Answers								
$\begin{aligned} & \text { n } \\ & \text { d } \\ & 3 \\ & 3 \\ & \frac{3}{4} \end{aligned}$	Q. 1	C	Q. 2	B	Q. 3	B	Q. 4	B
	Q. 5	A	Q. 6	D	Q. 7	A	Q. 8	D
	Q. 9	B	Q. 10	C	Q. 11	C	Q. 12	D
	Q. 13	D	Q. 14	C	Q. 15	C		
	Q. 16	Total area: $1632 \mathrm{~cm}^{2}$ and remaining area is 1868 cm^{2}.	Q. 17	$\begin{aligned} & \text { Diagonal = } 48 \\ & \mathrm{~cm} \text {, area of } \\ & \text { rhombus= } \\ & 1320 \mathrm{~cm}^{2} . \end{aligned}$	Q. 18	$a=0, b=1$	Q. 19	1
	Q. 20	1	Q. 21	$x=75^{\circ}$	Q. 22	$\angle E B F=27^{\circ}$	Q. 23	$x=y=60^{\circ}, t=z=70^{\circ}$
	Q. 24	(i) $(0,0)$ (ii) $(4,2)$ (iii) $(0,-2)$						

