

Q.9.	In the given Venn diagram, shaded portion represents							
	A	($A U B)^{\prime}$	B	A'UB	C	$A-B$	D	$B-A$
Q10	If X and Y are two sets such that $\mathrm{X} \cup \mathrm{Y}$ has 50 elements, X has 28 elements and Y has 32 elements, how many elements does $\mathrm{X} \cap \mathrm{Y}$ have?							
	A	12	B	22	C	10	D	110
Q. 11	$A=\{1,2\}$ and $B=\{x: x \in R, 0<x<3\}$. Then							
	A	A and B are disjoint sets	B	$A=B$	C	$B C A$	D	$A C B$
Q12.	A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports.							
	A	18	B	10	C	27	D	9
Q13	If $\mathrm{A}=\left\{\left(x, \frac{1}{x}\right): x \in R-\{0\}\right\}$ and $B=\{(x,-x): x \in R\}$, then							
	A	$A \cap B=A$	B	$A \cup B=A$	C	$A \cap B=B$	D	$A \cap B=\varnothing$
Q14	A survey shows that 63% of the people who watch a news channel whereas 76% watch another news channel. If $x \%$ of the people watch both channel, then							
	A	$\mathrm{X}=35$	B	$\mathrm{X}=63$	C	$39 \leq x \leq 63$	D	$\mathrm{X}=39$
Q15	If $A=\{x: x \in N 0<x<5\}, B=\{y: y$ s is a prime number less than 8$\}$, then $B-A$							
	A	$\{1,4\}$	B	$\{5,7\}$	C	\{1,24\}	D	\{2, 4,5, 7\}
Q16	$A=\left\{x: x=8^{n}-7 n-1, n \in N\right\}, B=\{x ; x=49 n-49, n \in N\}$, then :							
	A	$A \subset B$	B	$B \subset A$	C	$\mathrm{A}=\mathrm{B}$	D	$A \cap B=\varnothing$
Q17	Given: For two finite sets A and $B, n(A-B)=10+x, n(B-A)=3 x$ and $n(A \cap B)=x+1$. If $n(A)=n(B)$, then the value of x .							
	A	5	B	11	C	15	D	20

Q18	In a survey conducted on a group of 1000 people it is found that 40% buy product $\mathrm{A}, 20 \%$ buy product B, and 10% buy Product C, 5% buy products A and B, 3% buy products B and C and 4% buy products A and C. If 2% of the group buy all the three products. Based on the above information, answer the following:											
(i)	Find the number of people who buy product A only.											
	A.		330	B		400	C		370	D		300
(ii)	Find the number of people who buy at least one of the product A, B or C.											
	A		400	B		500	C		600	D		1000
(iii)	Find the number of people who buy exactly one of the product A, B or C.											
	A		120	B		60	C		100	D		700
	ANSWER											
$\begin{aligned} & \frac{1}{亠} \\ & \sum_{n}^{n} \\ & \frac{c}{4} \end{aligned}$	1	C		2	C		3.	A		4	A	
	5	D		6	C		7	B		8	C	
	9	B		10	C		11	D		12	D	
	13	D		14	C		15	D		16	A	
	17	A		18	A		18 (ii)	C		18 (iii)	B	

