

7	If the product of two positive integers is equal to the product of their HCF and LCM is true then, the $\operatorname{HCF}(32,36)$ is a) 2 b) 4 c) 6 d) 8
8	36 can be expressed as a product of its primes as a) $2^{2} \times 3^{2}$ b) $2^{2} \times 3^{3}$ c) $2^{3} \times 3^{1}$ d) $2^{0} \times 3^{0}$
	Case Study 3 A Mathematics Exhibition is being conducted in your School and one of your friends is making a model of a factor tree. He has some difficulty and asks for your help in completing a quiz for the audience. Observe the following factor tree and answer the following:
9	What will be the value of x ? a) 15005 b) 13915 c) 56920 d) 17429
10	What will be the value of y ? a) 23 b) 22 c) 11 d) 19
11	What will be the value of z ? a) 22 b) 23 c) 17 d) 19
12	According to Fundamental Theorem of Arithmetic 13915 is a a) Composite number b) Prime number c) Neither prime nor composite d) Even number
13	The prime factorisation of 13915 is a) $5 \times 11^{3} \times 13^{2}$ b) $5 \times 11^{3} \times 23^{2}$ d) $5 \times 11^{2} \times 23$ d) $5 \times 11^{2} \times 13^{s}$

Answers		
Case Study: 1	Case Study: 2	Case Study: 3
1. b) 12	1. c) 288	1. b) 13915
2. d) 21	2. b) 4	2. c) 11
3. 3780	3. a) $2^{2} \times 3^{2}$	3. b) 23
4. d) 45360		4. a) composite number
5. d) $2^{2} \times 3^{3}$	5. c) $5 \times 11^{2} \times 23$	

