

Q8	If each element of a second order determinant is either zero or one, how many matrices can be written such that the value of the determinant is positive?							
	A	1	B	2	C	3	D	4
Q9	Second derivative of $x^{2}+\log x$							
	A	$2-\frac{1}{x^{2}}$	B	$\frac{1}{x^{2}}$	C	$2 x+\frac{1}{x}$	D	$2+\frac{1}{x^{2}}$
Q10	$\text { If } x^{y}=a^{b}, \text { then } \frac{d y}{d x}$							
	A	$\frac{y}{x \log x}$	B	$-\frac{y}{x \log x}$	C	$\frac{x}{y \log x}$	D	$-\frac{x}{y \log x}$
Q11	The derivative of $e^{x}+e^{2 x}+e^{3 x}$ at $\mathrm{x}=1$							
	A	6 e		$e+e^{2}+e^{3}$	C	$e+2 e^{2}+3 e^{3}$	D	3 e
Q12	If $\mathrm{x}=\mathrm{t}^{4}, \mathrm{y}=\mathrm{t}^{2}+2$, then $\frac{d y}{d x}$ at $t=1$							
	A	0	B	1	C	$\frac{1}{2}$	D	$\frac{2}{3}$
Q13	If $y=\frac{x^{2}}{\log x}$, then $\frac{d y}{d x}$							
	A	$\frac{x(2 \log x-1)}{(\log x)^{2}}$	B	$\frac{x(2 \log x+1)}{(\log x)^{2}}$	C	$\frac{x(2 \log x-x)}{(\log x)^{2}}$	D	$\frac{x(2 \log x+x)}{(\log x)^{2}}$
Q14	If A is a matrix of order 2×4 and B is a matrix of 4×3 then							
	A	$A B$ is a matrix of order $2 x 3$	B	$B A$ is a matrix of order $3 x 2$	C	$\mathrm{AB}=\mathrm{BA}$	D	None of these
Q15	$A=\left(\begin{array}{cc}7 & 14 \\ 2 & 4\end{array}\right)$, then A^{-1}							
	A	$\left(\begin{array}{cc}4 & -14 \\ -2 & 7\end{array}\right)$	B	$\left(\begin{array}{cc}7 & -2 \\ -14 & 4\end{array}\right)$	C	$\left(\begin{array}{cc}4 & -2 \\ -14 & 7\end{array}\right)$	D	does not exist

Q16.	On her birth day, Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Let the number of children be x and the amount distributed by Seema for one child be y (in ₹) Based on the information given above, answer the following questions:							
(i)	The equations in terms x and y are							
	A	$\begin{aligned} & 5 x-4 y=40 \\ & 5 x-8 y=-80 \end{aligned}$	B	$\begin{array}{r} 5 x-4 y=40 \\ 5 x-8 y=80 \end{array}$	C	$\begin{aligned} & 5 x-4 y=40 \\ & 5 x+8 y=-8 \end{aligned}$	D	$\begin{aligned} 5 x+4 y & =40 \\ 5 x-8 y & =-8 \end{aligned}$
(ii)	The number of children who were given some money by Seema, i							
	A	30	B	40	C	23	D	32
(iii)	How much amount is given to each child by Seema?							
	A	32	B	30	C	60	D	26
(iv)	How much amount Seema spends in distributing the money to all the students of the Orphanage?							
	A	₹609	B	₹690	C	₹960	D	₹906
Q17	The area of triangle whose vertices are (1, -1), (-4, 6) and (-3, -5) =Sq. units							
	A	12	B	24	C	36	D	48
Q18.	A is a square matrix and $A^{2}=I$, then A^{-1}							
	A	I	C	0	C	A	D	2A
Q19.	State TRUE or FALSE: Two matrices are equal if they are of the same order and their corresponding elements are equal							
Q20.	Which of the following is correct?							
	A	Matrix multiplication is commutative			B	Matrix addition is commutative		
	C	Matrix subtraction is commutative			D	All statements A, B and C are correct		

Q21.	Solve for x : $\left\|\begin{array}{ccc}x & 4 & 1 \\ 4 & x & 8 \\ 5 & 5 & x\end{array}\right\|=0$							
	A	-9 or 4 or 5	B	9 or -4 or - 5	C	9 or 4 or 5	D	-9 or 4 or -5
Q22.	A matrix has 12 elements. Which of the following may be the order of the matrix?							
	A	6x6	B	4×8	C	12×12	D	12x1
Q23.	$\left\|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right\|=$							
	A	4abc	B	-4abc	C	$4 a^{2} b^{2} c^{2}$	D	$-4 a^{2} b^{2} c^{2}$
Q24.	Which of the following is correct?							
	A	Determinant is a square matrix	B	Determinant is a number associated to a matrix	C	Determinant is a number associated to a square matrix.	D	None of these
Q25	Which of the following is correct for the given system of linear equations?$3 x-y-2 z=2,2 y-z=-1 \quad 3 x-5 y=3$							
	A	Unique solution	B	No solution	C	Infinite solutions	D	None of these
Q26	The sum of three numbers is 6 . If we multiply third number by 3 and add second number to it, we get 11 . By adding first and third numbers, we get double of the second number. Represent these conditions using matrix algebra.							
Q27.	Write a 3×3 matrix such that $A=\left[a_{i j}\right]$, such that $a_{i j}=\frac{(i+j)^{2}}{2}$							

$+$ \qquad Department of O Mathematics \qquad D			INDIAN SCHOOL AL WADI AL KABIR Class XII, Applied Mathematics Revision Worksheet- UNIT TEST 30-05-2021					
Answers								
	1	A	2	B	3.	C	4	D
	5	D	6	C	7	B	8	C
	9	A	10	B	11	C	12	C
	13	A	14	A	15	D	16	A
	16 (ii)	D	16 (iii)	B	$\begin{aligned} & 16 \\ & \text { (iv) } \end{aligned}$	C	17	B
	18	C	19	TRUE	20	B	21	A
	22	D	23	C	24	C	25	A
	26	$\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}6 \\ 11 \\ 0\end{array}\right)$			27	$\left(\begin{array}{ccc}2 & \frac{9}{2} & 8 \\ 9 & & \\ \frac{2}{2} & 8 & \frac{25}{2} \\ 8 & \frac{25}{2} & 18\end{array}\right)$		

