INDIAN SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE 2021-22 SUBJECT : PHYSICS	Date of submission:
Worksheet No:02 WITH HINTS	Topic: MOTION IN A PLANE	$\mathbf{1 0 . 0 6 . 2 0 2 1}$
NAME OF THE STUDENT	CLASS /SECTION	Note: A4 FILE
FORMAT		

OBJECTIVE TYPE QUESTIONS

[1] Two projectiles A B are thrown from the same point with the same speed of $30 \mathrm{~m} / \mathrm{s}$ at angles of projection 50° and θ respectively, so that both the projectiles having the same range. Then the angle θ is
[a] 45° [b.] 40° [c] 50^{0} [d] 50°
[2] The range of a projectile, when launched at an angle of 15° with horizontal is 1.5 km . What is the range of the projectile, when launched at an angle of 45° to the horizontal?
[a] $4 \mathrm{~km}[\mathrm{~b}] 5 \mathrm{~km}$ [c] $3.5 \mathrm{~km}[\mathrm{~d}] 3 \mathrm{~km}$
[3] If the muzzle velocity of the shell is $400 \mathrm{~m} / \mathrm{s}$, the Maximum range of a gun along horizontal is
[a] 4 km [b.] 16 km [c] 8 km [d] 20 km
[4] The angular speed of a fly-wheel making 120 r.p.m is
[a] $4 \pi \mathrm{rad} / \mathrm{s}$
[b] $\pi \mathrm{rad} / \mathrm{s}$
[c] $2 \pi \mathrm{rad} / \mathrm{s}$
[d] $4 \pi^{2} \mathrm{rad} / \mathrm{s}$
[5] A body is whirled in a horizontal circle of radius 20 cm . It has an angular velocity of 10 $\mathrm{rad} / \mathrm{s}$. What is the linear velocity at any point on the circular path?
[a] $10 \mathrm{~m} / \mathrm{s}$
[b] $20 \mathrm{~m} / \mathrm{s}$
[c] $\sqrt{2} \mathrm{~m} / \mathrm{s}[\mathrm{d}] 2 \mathrm{~m} / \mathrm{s}$

Answer Key

Very Short answer type questions (1marks)

[6] Name the only force acting on a projectile, when it is projected into the atmosphere?
[7] A ball is thrown in a parabolic path. Is there any point at which the acceleration is perpendicular to the velocity?
[8] A ball ' A ' is dropped from the top a tower and another ball ' B ' is projected horizontally from the same point. Which ball will reach the ground first ?
[9]What is the angle between the velocity vector and acc. vector in uniform circular motion?
[10] Two bullets A and B are fired horizontally with different velocities , U_{A} and U_{B} respectively .If U_{A} is greater than U_{B}, which will reach the ground first. why?

Answer Key

[6] force due to gravity
[7]maximum height
[8] both at same time
[9]90
[10] both at same time

Short answer type questions (2 marks)

[11] A boy is moving with velocity $3 \mathrm{~km} / \mathrm{h}$ along east and the rain is falling vertically with velocity $4 \mathrm{~km} / \mathrm{hr}$. Calculate the velocity of rain relative to boy [take $\tan 37^{\circ}=0.75$]

Apply triangle law of vector addition and use the formula $\operatorname{Tan} \theta=\frac{o p p}{a d j}$
[12]Show that when the horizontal range is maximum, height attained by the body is one fourth the maximum range in the projectile motion.

$$
\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}} \quad \mathrm{H}=\frac{\mathrm{u}^{2} \sin _{\theta}^{2}}{2 \mathrm{~g}} ;
$$

For $\theta=45^{\circ} \mathrm{H}=\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}=\frac{1}{4}$ of the Rmax.
[13] A cricket ball is thrown at a speed of $28 \mathrm{~m} / \mathrm{s}$ in a direction 30° above the horizontal. [i]Maximum height[ii] time of flight[iii] time taken to reach maximum height[iv] horizontal range.
[i] $\mathrm{H}=\frac{\mathrm{u}^{2} \sin _{\theta}^{2}}{2 \mathrm{~g}}$ [ii] $\frac{2 u \sin \theta}{g}$ [iii] $\frac{u \sin \theta}{g}$ [iv] $\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}$
Ans-10m, 5.8s, 2.9s,69.3m

Long answer question (3 marks)

[14] What is angular velocity and angular acceleration? Establish a relation with
a) Angular velocity and linear velocity
b) Angular acceleration and linear acceleration
[15] Show that there are two angles θ_{1} and θ_{2} projections for the same horizontal range.
[16]An aero plane moving horizontally at $150 \mathrm{~m} / \mathrm{s}$ releases a bomb at a height of 500 m . The bomb hits the target. what was the horizontal distance of the aero plane from the target when the bomb was released?

Horizontal Velocity $=\frac{\text { displacement }}{\text { time }}$
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{~g} t^{2}$
Horizontal distance $=1500 \mathrm{~m}$

Very Long answer question (5 marks)

[17] Derive an expression to find the centripetal acceleration and hence centripetal force
[18]What is centripetal acceleration and centripetal force? Derive an expression for centripetal acceleration\& centripetal force.
[19] Show that the path traced by a projectile is parabola. Derive the equations to find the [i]Maximum height[ii] time of flight[iii] time taken to reach maximum height[iv] horizontal range.
[20] State the parallelogram law of vector addition. Derive an expression for magnitude and direction of resultant of the two vectors.

