	INDIAN SCHOOL AL WADI AL KABIR		
Class: XI		Department of Science 2021-22 Subject : Chemistry	Date of submission: 06.05.2021
Worksheet No: 01 with answers	Chapter:	OME BASIC CONCEPTS OF CHEMISTRY	Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS \& SEC:	ROLL NO.

Objective Type Questions

1. What will be the molarity of solution which contains 5.85 grams of sodium chloride in 500 ml of solution (a) $4 \mathrm{~mol} / \mathrm{L}$ (b) $20 \mathrm{~mol} / \mathrm{L}$ (c) $0.2 \mathrm{~mol} / \mathrm{L}$ (d) $2 \mathrm{~mol} / \mathrm{L}$
2. What will be the molality of solution containing 18.25 grams of HCl in 500 ml of water
(a) 0.1 m (b) 1 M
(c) 1 m (d)
(d) 0.5 m
3. What is the mass percentage of carbon in carbon dioxide?
(a) 0.034% (b) 27.27%
(c) 3.4%
(d) 28.7%
4. The empirical formula and Molar mass of a compound are $\mathrm{CH}_{2} \mathrm{O}$ and 180 grams respectively What will be the molecular formula of the compound?
(a) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}(\mathrm{~b})$
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
5. Which of the following is dependent on temperature?
(a) Molarity
(b) Molality
(c)Mole fraction
(d) Mass percentage
6. Which of the following compounds has the same empirical formula as that of glucose?
a. $\mathrm{CH}_{3} \mathrm{CHO}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{C}_{2} \mathrm{H}_{6}$
7. A binary compound contains $50 \% \mathrm{~A}$ (at. mass $=16$) and $50 \% \mathrm{~B}$ (at. mass 32). The empirical formula of the compound is \qquad -.
8. 10 mol of Zn reacts with 10 mol of HCl . Calculate the number of moles of H_{2} produced (a) 5 mol (b) 10 mol (c) 20 mol (d) 2.5 mol

Questions 9-10 are Assertion Reason type questions

a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
c. If Assertion is correct and Reason is wrong.
d. If Assertion is wrong and Reason is correct.
9. Assertion: Number of moles of H_{2} in 0.224 L of hydrogen is 0.01 mole.

Reason: 22.4 L of H_{2} at STP contains 6.023×10^{23} moles.
10. Assertion (A): The empirical mass of ethene is half of its molecular mass.

Reason I: The empirical formula represents the simplest whole number ratio of various atoms present in a compound.

2 Marks questions

11. Calculate the percentage of N in urea. (Molar mass of urea $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) Molecular formula of Urea is $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
12. Prove that sum of all mole fractions of a solution is unity
13. Write empirical formula of following:
$\mathrm{CO}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KCl}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$
14. An organic compound contains 144 g of carbon and 12 g of hydrogen. If molar mass of this compound is $78 \mathrm{gmol}^{-1}$, calculate:
I. Empirical formula
II. Molecular formula
15. How many moles of ethane are required to produce $66 \mathrm{~g} \mathrm{CO}_{2}$ after combustion?
16. A solution is prepared by dissolving 150 g of NaCl in 900 g of water. Calculate the mole fraction of each component.
17. How many moles of N_{2} are required to produce 85 g of NH_{3} ? Calculate its mass.

3 Marks Questions

18. What do you mean by limiting reagent?

400 g of N_{2} and 150 g of H_{2} are mixed together to form NH_{3}. Identify the limiting reagent and calculate the amount of NH_{3} produced.
19. Explain the following:
a. Mole fraction
b. Molarity
c. Molality
20. The density of the 2 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution.
21. Zinc and hydrochloric acid react according to the reaction:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

If 0.30 mol Zn are added to hydrochloric acid containing 0.52 mol of HCl , how many moles of H_{2} are produced?
22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is $194.19 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

5 Marks Questions

23. Calcium carbonate reacts with aqueous HCl to produce CaCl_{2} and CO_{2}. According to the reaction given below
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
What mass of calcium chloride will be formed when 0.19 mole of HCl reacts with 1000 grams of Calcium carbonate Name the limiting reagent.
24 Calculate the molality and molarity of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (mass/volume). The density of the solution is
1.84 gram per ml

Answers

1.	c					
2.	c					
3.	b					
4.	c					
5.	a					
6.	b					
7.	$\mathrm{A}_{2} \mathrm{~B}$					
8.	a					
9.	c					
10	a					
11	46.6\%					
12	Mole fraction of A in solution $\left(x_{A}\right)=\frac{n_{A}}{n_{A}+n_{B}}$ Mole fraction of B in solution $(x a)=\frac{n_{B}}{n_{A}+n_{B}}$ So, $x_{A}+x_{B}=\frac{n_{A}+n_{B}}{n_{A}+n_{B}}=1$					
13	$\begin{aligned} & \mathrm{CO}-\mathrm{CO} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \mathrm{KCl}-\mathrm{KCl} \\ & \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{O}_{3} \\ & \hline \end{aligned}$					
14		Element	Mass	Moles	Ratio	Simplest ratio
		C	144	12	1	1
		H	12	12	1	1

	Empirical formula $=\mathrm{CH}$ Empirical formula mass $=13$ $\mathrm{n}=78 / 13=6$ Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$
15	$\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ No: of moles of $\mathrm{CO}_{2}=66 / 44=1.5$ moles Ans: 0.75 moles of ethane
16	$\begin{aligned} & \mathrm{n}_{\mathrm{NaCl}}=150 / 58.5=2.56 \\ & \mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=900 / 18=50 \\ & \chi_{\mathrm{NaCl}}=2.56 / 2.56+50=0.0487 \\ & \chi_{\text {н2O }}=50 / 52.56=0.951 \end{aligned}$
17	
18	. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ No: of moles of $\mathrm{N}_{2}=400 / 28=14.28 \mathrm{~mol}$ No: of moles of $\mathrm{H}_{2}=150 / 2=75 \mathrm{~mol}$ No: of moles of H_{2} required for 14.28 moles of $\mathrm{N}_{2}=42.84 \mathrm{~mol}$ Therefore, H_{2} is excess reagent i.e. N_{2} is limiting reagent. Therefore no: of moles of $\mathrm{NH}_{3}=28.56 \mathrm{~mol}$ Mass of $\mathrm{NH}_{3}=28.56 \times 17=485.52 \mathrm{~g}$

19	. a. Mole fraction: It is the ratio of number of moles of a particular component to the total number of moles of the solution. Mole fraction of A $\begin{aligned} & =\frac{\text { No.of moles of } \mathrm{A}}{\text { No.of moles of solutions }} \\ & =\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ Mole fraction of B $\begin{aligned} & =\frac{\text { No. of moles of } \mathrm{B}}{\text { No. of moles of solutions }} \\ & =\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ b. Molarity: It is defined as the number of moles of the solute in 1 litre of the solution. $\text { Molarity }(\mathrm{M})=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}$ c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent. $\text { Molality }(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in kg }}$
20	```. Molarity \(=2 \mathrm{M}\) Assume volume of solution \(=1 \mathrm{~L}\) Therefore, No of moles of \(\mathrm{NaCl}=2 \mathrm{~mol}\) Mass of \(\mathrm{NaCl}=2 \times 58.5=117 \mathrm{~g}\) Mass of 1 L of solution \(=1.25 \mathrm{gml}^{-1} \times 1000 \mathrm{~g}=1250 \mathrm{~g}\). (Since density \(=1.25 \mathrm{gml}^{-1}\) and density \(=\) mass \(/\) volume) Mass of water \(=1250 \mathrm{~g}-117 \mathrm{~g}\) \(=1133 \mathrm{~g}\) Molality \(=\) No: of moles of solute/ Mass of solvent \((\mathrm{kg})\) \(=2 / 1.133\) \(=1.765 \mathrm{molkg}^{-1}\)```
21	HCl is limiting reagent; H_{2} formed $=0.36 \mathrm{~mol}$
22	$\begin{aligned} & \text { Moles of } \mathrm{C}=49.48 / 12=4.12 \mathrm{~mol} \\ & \text { Moles of } \mathrm{H}=5.19 / 1=5.19 \mathrm{~mol} \\ & \text { Moles of } \mathrm{O}=16.48 / 16=1.03 \mathrm{~mol} \\ & \text { Moles of } \mathrm{N}=28.85 / 14=2.06 \mathrm{~mol} \\ & \text { Empirical formula }=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O} \\ & \text { Molecular formula }=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \end{aligned}$
23	HCl is the limiting reagent 10.54 grams of calcium chloride is formed
24	Molarity $=9.49 \mathrm{M}$, molality $=10.43 \mathrm{~m}$
	pared by Ms. Jasmin Joseph Checked by : HOD - SCIENCE

