	INDIAI	N SCHOOL AL WADI AL KABIR	
Class: XI	D	epartment of Science 2021-22 Subject : Chemistry	Date of submission: 06.05.2021
Worksheet No: 01 with answers	Chapter: SOM	E BASIC CONCEPTS OF CHEMISTRY	Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

Objective Type Questions

- 1. What will be the molarity of solution which contains 5.85 grams of sodium chloride in 500 ml of solution (a)4 mol/L (b) 20 mol/L (c) 0.2 mol/L (d) 2 mol/L
- 2. What will be the molality of solution containing 18.25 grams of HCl in 500ml of water (a) 0.1 m (b) 1 M (c) 1m (d) 0.5 m
- 3. What is the mass percentage of carbon in carbon dioxide?
 - (a) 0.034 % (b) 27.27% (c) 3.4 % (d) 28.7 %
- 4. The empirical formula and Molar mass of a compound are CH₂O and 180 grams respectively What will be the molecular formula of the compound?
 - (a) $C_9 H_{18}O_9$ (b) CH_2O (c) $C_6H_{12}O_6$ (d) $C_2H_4 O_2$
- 5. Which of the following is dependent on temperature?
 - (a) Molarity
 - (b) Molality
 - (c)Mole fraction
 - (d) Mass percentage
- 6. Which of the following compounds has the same empirical formula as that of glucose?
 - a. CH₃CHO

b. CH₃COOH

c. CH₃OH

 $d. C_2H_6$

- 7. A binary compound contains 50% A (at. mass = 16) and 50% B (at. mass 32). The empirical formula of the compound is _____.
- 8. 10 mol of Zn reacts with 10 mol of HCl. Calculate the number of moles of H₂ produced (a) 5 mol (b) 10 mol(c) 20 mol (d) 2.5 mol

Questions 9-10 are Assertion Reason type questions

- a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
- c. If Assertion is correct and Reason is wrong.
- d. If Assertion is wrong and Reason is correct.
- 9. Assertion: Number of moles of H₂ in 0.224 L of hydrogen is 0.01 mole.

Reason: 22.4 L of H₂ at STP contains 6.023×10^{23} moles.

10. Assertion (A): The empirical mass of ethene is half of its molecular mass.

Reason I: The empirical formula represents the simplest whole number ratio of various atoms present in a compound.

2 Marks questions

- 11. Calculate the percentage of N in urea. (Molar mass of urea = 60 g mol^{-1}) Molecular formula of Urea is NH_2CONH_2
- 12. Prove that sum of all mole fractions of a solution is unity
- 13. Write empirical formula of following:

CO, Na₂CO₃, KCl, H₃PO₄, Fe₂O₃

- 14. An organic compound contains 144g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol⁻¹, calculate:
 - I. Empirical formula
 - II. Molecular formula
- 15. How many moles of ethane are required to produce 66 g CO₂ after combustion?
- 16. A solution is prepared by dissolving 150g of NaCl in 900 g of water. Calculate the mole fraction of each component.
- 17. How many moles of N₂ are required to produce 85g of NH₃? Calculate its mass.

3 Marks Questions

18. What do you mean by limiting reagent?

400 g of N_2 and 150 g of H_2 are mixed together to form NH_3 . Identify the limiting reagent and calculate the amount of NH_3 produced.

- 19. Explain the following:
 - a. Mole fraction
 - b. Molarity
 - c. Molality
- 20. The density of the 2M solution of NaCl is 1.25 g ml⁻¹. Calculate molality of the solution.

21. Zinc and hydrochloric acid react according to the reaction:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

- If 0.30 mol Zn are added to hydrochloric acid containing 0.52 mol of HCl, how many moles of H₂ are produced?
- 22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol. What is its molecular formula?

5 Marks Questions

23. Calcium carbonate reacts with aqueous HCl to produce CaCl₂ and CO₂. According to the reaction given below

$$CaCO_3 + 2 HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

What mass of calcium chloride will be formed when 0.19 mole of HCl reacts with 1000 grams of Calcium carbonate Name the limiting reagent.

24 Calculate the molality and molarity of 93 % H₂SO₄(mass/volume). The density of the solution is 1.84 gram per ml

Answers

1.	c						
2.	c						
3.	b						
4.	c						
5.	a						
6.	b						
7.	A_2B						
8.	a						
9.	c						
10	a						
11	46.6%						
12	Mol	le fraction of	A in solution	$n\left(x_A ight) = rac{n_A}{n_A + n_B}$			
	Mole fraction of B in solution $(xa) = rac{n_A + n_B}{n_A + n_B}$						
	So,						
	$x_A+x_B=rac{n_A+n_B}{n_A+n_B}=1$						
13	CO) – CO					
	Na_2CO_3 - Na_2CO_3						
	KCl – KCl						
	H ₃ I	PO ₄ - H ₃ PO ₄					
	Fe ₂	O_3 - Fe_2O_3					
14		Element	Mass	Moles	Ratio	Simplest ratio	
		С	144	12	1	1	
		Н	12	12	1	1	
<u> </u>	l	<u>l</u>	l		<u> </u>	l	

	Empirical formula = CH				
	Empirical formula mass = 13				
	n = 78/13 = 6 Melagular formula – C. H.				
	Molecular formula = C_6H_6				
15	$C_2H_6 + 7/2 O_2 \rightarrow 2CO_2 + 3H_2O$				
	No: of moles of $CO_2 = 66/44 = 1.5$ moles				
	C_2H_6 CO_2				
	As per eqn 1 mol 2 mol				
	As per qn ? 1.5 mol				
	Ans: 0.75 moles of ethane				
16	$n_{\text{NaCl}} = 150 / 58.5 = 2.56$				
	$n_{H2O} = 900 / 18 = 50$				
	$\chi_{\text{NaCl}} = 2.56 / 2.56 + 50 = 0.0487$				
	$\chi_{\rm H2O} = 50 / 52.56 = 0.951$				
17	$N_2 + 3H_2 \rightarrow 2NH_3$				
	N. C. 1. CNIII. 05/17. 5. 1				
	No: of moles of $NH_3 = 85/17 = 5$ moles				
	N_2 NH_3				
	As per eqn, 1 mol 2 mol				
	As per qn, ? 5 moles				
	Therefore no: of moles of $N_2 = 2.5$ moles				
18	. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent.				
	$N_2 + 3H_2 \Rightarrow 2NH_3$				
	No: of moles of $N_2 = 400/28 = 14.28 \text{ mol}$				
	No: of moles of $H_2 = 150 / 2 = 75 \text{ mol}$				
	N_2 H_2				
	As per eqn. 1 3				
	As per qn, 14.28 ?				
	No: of moles of H_2 required for 14.28 moles of $N_2 = 42.84$ mol Therefore, H_2 is excess reagent i.e. N_2 is limiting reagent.				
	N_2 N_{H_3}				
	As per eqn. 1 2 As per qn, 14.28 ?				
	735 poi qui, 17.20 :				
	Therefore no: of moles of NH ₃ = 28.56 mol				
	Mass of NH ₃ = $28.56 \times 17 = 485.52 \text{ g}$				

19	. a. Mole fraction: It is the ratio of number of moles of a particular component to the total number of moles of the solution.					
	Mole fraction of A					
	No. of moles of A					
	$= \frac{\text{No.of moles of } A}{\text{No.of moles of solutions}}$					
	$=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}$					
	A TEB					
	Mole fraction of B					
	No. of moles of B					
	= No. of moles of solutions					
	$n_{\scriptscriptstyle \mathrm{B}}$					
	$=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}$					
	A D					
	h Malaritan It is defined as the growth or of males of the solute in 1 litus of the solution					
	b. Molarity: It is defined as the number of moles of the solute in 1 litre of the solution.					
	$Molarity (M) = \frac{No. \text{ of moles of solute}}{Volume \text{ of solution in litres}}$					
	c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent.					
	$Molality (m) = \frac{No. \text{ of moles of solute}}{Mass \text{ of solvent in kg}}$					
	Mass of solvent in kg					
20	. Molarity = 2M					
	Assume volume of solution = $1 L$					
	Therefore, No of moles of NaCl = 2 mol					
	Mass of NaCl = $2 \times 58.5 = 117 \text{ g}$					
	Mass of 1 L of solution = $1.25 \text{ gml}^{-1} \times 1000 \text{g} = 1250 \text{ g}$.					
	(Since density = 1.25 gml ⁻¹ and density = mass / volume) Mass of water = 1250 g -117 g					
	= 1133 g					
	Molality = No: of moles of solute/ Mass of solvent(kg)					
	= 2/1.133					
21	= 1.765 molkg ⁻¹					
21	HCl is limiting reagent; H_2 formed = 0.36 mol					
22	Moles of $C = 49.48/12 = 4.12 \text{ mol}$					
	Moles of $H = 5.19/1 = 5.19 \text{ mol}$					
	Moles of $O = 16.48/16 = 1.03 \text{ mol}$					
	Moles of $N = 28.85/14 = 2.06 \text{ mol}$					
	Empirical formula – C. H. N. O.					
	Empirical formula = $C_4H_5N_2O$ Molecular formula = $C_8H_{10}N_4O_2$					
23	HCl is the limiting reagent					
	10.54 grams of calcium chloride is formed					
24	Molarity = 9.49 M, molality = 10.43 m					
Pre	pared by Ms. Jasmin Joseph Checked by : HOD - SCIENCE					