Class: XII	INDIAN SCHOOL AL WADI AL KABIR	
SUBJECT: PHYSICS	Department: SCIENCE 2021-22	Date of submission: 22/05/2021
Worksheet No: 03 with answers	CHAPTER: CURRENT ELECTRICITY	Note:
Name of the student:	Class \& Sec:	A4 FILE FORMAT

SECTION - A
 MCQ BASED QUESTIONS

1. An electric heater is connected to the voltage supply. After few seconds, current gets its steady value then its initial current will be
(a) equal to its steady current
(b) slightly higher than its steady current
(c) slightly less than its steady current
(d) zero

Answer: b
2. In the series combination of two or more than two resistances
(a) the current through each resistance is same.
(b) the voltage through each resistance is same.
(c) neither current nor voltage through each resistance is same.
(d) both current and voltage through each resistance are same.

Answer- a
3. Combine three resistors $5 \Omega, 4.5 \Omega$ and 3Ω in such a way that the total resistance of this combination is maximum
(a) 12.5Ω
(b) 13.5Ω
(c) 14.5Ω
(d) 16.5Ω

Answer. a
4. A cell having an emf E and internal resistance r is connected across a variable external resistance R . As the resistance R is increased, the plot of potential difference V across R is given by
(a) V

(b)

(c)

(d)

Answer-b
5. In parallel combination of n cells, we obtain
(a) more voltage
(b) more current
(c) less voltage
(d) less current

Answer-b
6. If n cells each of emf e and internal resistance r are connected in parallel, then the total emf and internal resistance will be
(a) $\varepsilon, \frac{r}{n}$
(b) $\varepsilon, n r$
(d) $n \varepsilon, \frac{r}{n}$
(d) $n \varepsilon, n r$

Answer- a
7. In a Wheatstone bridge if the battery and galvanometer are interchanged then the deflection in galvanometer will
(a) change in previous direction
(b) not change
(c) change in opposite direction
(d) none of these.

Answer-b

8. When a metal conductor connected to left gap of a meter bridge is heated, the balancing point
(a) shifts towards right
(b) shifts towards left
(c) remains unchanged
(d) remains at zero

Answer-a
9. In a potentiometer of 10 wires, the balance point is obtained on the $7^{\text {th }}$ wire. To shift the balance point to 9th wire, we should
(a) decrease resistance in the main circuit.
(b) increase resistance in the main circuit.
(c) decrease resistance in series with the cell whose emf is to be measured.
(d) increase resistance in series with the cell whose emf is to be determined.

Answer-d
10. $A B$ is a wire of potentiometer with the increase in the value of resistance R, the shift in the balance point J will be

(a) towards B
(b) towards A
(c) remains constant
(d) first towards B then back towards A.

Answer- a
11. A charge is moving across a junction, then
(a) momentum will be conserved.
(b) momentum will not be conserved.
(c) at some places momentum will be conserved and at some other places momentum will not be conserved.
(d) none of these.

Answer- d
12. Which of the following I-V graph represents ohmic conductors?

(b)

(c)

(d)

Answer-a
13. The I-V characteristics shown in figure represents

(a) ohmic conductors
(b) non-ohmic conductors
(c) insulators
(d) superconductors

Answer-b
14. Which of the following is correct for V-I graph of a good conductor?
(a)

(b)

(c)

(d)

Answer-a
15. The resistivity of alloy manganin is
(a) Nearly independent of temperature
(b) Increases rapidly with increase in temperature
(c) Decreases with increase in temperature
(d) Increases rapidly with decrease in temperature

Answer-a
16. The magnitude and direction of the current in the circuit shown will be
(a) 7/3 A from a to b through e.
(b) $7 / 3 \mathrm{~A}$ from b to a through e .
(c) 1 A from a to b through e .
(d) 1 A from b to a through e.

Ans: - (c).
Hints: - cells are connected in parallel.

Since $E_{1}(10 \mathrm{~V})>\mathrm{E}_{\mathbf{2}}(\mathbf{4 V})$
So current in the circuit will be clockwise.

Applying Kirchoff's voltage law

$-1 \times i+10-4-2 \times i-3 i=0 \Rightarrow i=1 A(a$ to b viae)
\therefore Current $=\frac{V}{R}=\frac{10-4}{6}=1.0$ ampere
17. Ohm's law is true for
(a) For metallic conductors at low temperature.
(b) For metallic conductors at high temperature.
(c) for electrolytes when current passes through them.
(d) For diode when current flows.

Ans: - (a).
18. In an experiment of meter Bridge, a null point is obtained at the center of the bridge wire. When a resistance of 10Ω is connected in one gap, the value of resistance in other gap is
(a) 10Ω
(b) 5Ω
(c) 15Ω
(d) 500

Ans: - (a).
19. The Terminal potential difference of a cell is greater than its e.m.f. when it is
(a) Being discharged.
(b) In open circuit.
(c) Being charged.
(d) Being either charged or discharged.

Ans: - (c).
20. A fuse wire is a wire of
(a) Both low resistance and low melting point.
(b) High resistance and low melting point.
(c) Low resistance and high melting point.
(d) Both high resistance and high melting point.

Ans: - (b).
21. In India electricity is supplied for domestic use at 220 V . It is supplied at 110 V in U.S.A. If the resistance of a 60 W bulb for use in India is $\mathrm{R} \Omega$, then resistance of a 60 W bulb for use in U.S.A will be
(a) $R \Omega$.
(b) $2 R \Omega$.
(c) $R / 4 \Omega$.
(d) $R / 2 \Omega$.

Ans: - (c).
Hints: $-\mathrm{R}=\mathrm{V}^{2} / \mathrm{P}$.
22. A wire of resistance 10Ω is elongated by 10%. The resistance of the elongated wire is
(a) 10.1Ω.
(b) 11.1Ω.
(c) 12.1Ω.
(d) 13.1Ω.

Ans: - (c).
Hints: $-R=\rho I / A=\rho I^{2} / A I=\rho I^{2} / V, R \propto I^{2}$.
23. Which of the following physical quantities possesses the dimensions of $\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}$?
(a) resistance.
(b) resistivity.
(c) conductivity.
(d) emf.

Ans: - (c).
24. Given a current carrying wire of non-uniform cross section. Which of the following is constant throughout the length of the wire?
(a) current, electric field and drift speed
(b) current and drift speed
(c) drift speed only
(d) current only

Ans: - (d).
25. The potential difference between points A and B of given figure is. \qquad

Ans: - (4/3 V)
Hints: - total resistance $=15 / 2$ ohm.
Current through each branch $=2 / 15 \mathrm{~A}$.
$V_{A B}=I X$ resistance of $A B .=2 / 15 \times 10=4 / 3$ volt.

SECTION B (2 MARKS QUESTIONS)

1. Eight resistances each of 4Ω are connected in the circuit as shown in figure. The equivalent resistance between A and B is \qquad

Ans: - (2.8),
Hints: - apply law of symmetry about 0 .

2. An electric bulb is rated 220 V and 100 W .

Power consumed by it when operated on 110 V is \qquad
Ans: - (25 W).
3. the mean time interval of two consecutive collisions of free electrons with positive ion in a conductor is called \qquad
Ans: - relaxation time.
4. $10 \mathrm{kWH}=$ \qquad J.

Ans: $-3.6 \times 10^{7} \mathrm{~J}$.
5. Two materials Si and Cu are cooled from 300 K to 60 K . What will be the effect on their resistivity?

Ans: -The specific resistivity of copper (metal) will decrease but that of silicon (semiconductor) will increase.
6. Out of V - I graph for parallel and series combination of two metallic resistors, which one represents parallel combination of resistors? Justify your answer.

Ans: - A is series and B is in parallel, $R=$ slope of V - I graph.
7. It is easier to start a car engine on a warm day than on chilly day. Why?

Ans: - On a warm day the temperature is higher as compared to than on a chilly day. The internal resistance of a car battery decreases with increase in temperature and hence, it becomes easier to start a car engine.

Or
What is the composition of materials used in the fuse wire?
Ans: - (63\%tin and 37\%lead)
8. A wire of resistivity ρ is stretched to double its length. What will be its new resistivity?
Ans: - (unchanged).
9. A carbon resistor has a value of $62 \mathrm{k} \Omega$ with a tolerance of 5%. Give the colour code of the resistor.
Ans: - Red $=2$, Blue $=6$, Orange $=3$, Gold $=5 \%$

SECTION - C (3 MARKS QUESTIONS)

1.(a) Plot a graph showing the variation of resistance of a conducting wire as a function of its radius, keeping the length of the wire and its temperature as constant.
Ans: $-R=\rho I / A, R \propto 1 / r^{2}$

(b) V-I graph for a metallic wire at two different temperatures T_{1} and T_{2} is as shown in the figure. Which of the two temperatures is higher and why?

Ans: $-\mathrm{R}=\mathrm{V} / \mathrm{I}$ and varies directly to temperature.
At T_{1} resistance is greater. $\left(T_{1}>T_{2}\right)$

2. (a)Differentiate between EMF and terminal potential difference. The EMF of a cell is always greater than its terminal voltage. Why? Give reason.
Ans: -he emf of a cell is greater than its terminal voltage because there is some potential drop across the cell due to its small internal resistance.
(b) You are given three constantan wires P, Q and R of length and area of crosssection (L, A), ($2 \mathrm{~L}, \mathrm{~A} / 2$), ($\mathrm{L} / 2,2 \mathrm{~A}$) respectively. Which has higher resistance? Ans: - Q.
3. (a) Graph showing the variation of current vs voltage for a material GaAs is shown in the figure. Identify the region of
(i) negative resistance.
(ii) where Ohm's law is obeyed.
(b) Give an example of a material each for which temperature coefficient of resistivity is (i) positive and
(ii) negative.

Ans: - (a)
(i) $D E$ (slope is negative and hence resistance).
(ii) BC (straight line)

(b) (i) Cu (metals, alloys).
(ii) Si (semiconductor).
4. (a) Show variation of resistivity of copper as a function of temperature in a graph.
(b) the plot of the variation of potential difference across a combination of three identical cells in series, versus a current is as shown here. What is the EMF of each cell?
Ans: - (a)
(b) 2 V .

5. (a) You are required to select a carbon resistor of resistance $47 \mathrm{k} \Omega \pm 10 \%$ from a large collection. What should be the sequence of colour bands used to code it? Ans: - yellow, violet, orange and silver.
(b) Write two characteristics of manganin, which make it suitable for making standard resistances.
Ans: - Manganin has a constant electrical resistance over a wide range of temperature that is a small value of temperature coefficients. This makes it has same resistance even if resistance is heated up.

Or
Define mobility of electron in a conductor. How does electron mobility change when (i) temperature of conductor is decreased?
(ii) and applied potential difference is doubled at constant temperature? Ans: - drift velocity per unit electric field applied is termed as mobility.
(i) When temperature of the conductor decreases, the relaxation time t of the electrons in the conductor increases, so mobility μ increase.
(ii) (ii) Mobility μ is independent of applied potential difference.
6.State the two Kirchhoff's rule used in electric networks. How are these rules justified?

- Ans: - K1L- The algebraic sum of total current into any junction of an electric circuit is zero.
- K2L-The algebraic sum of the potential differences in any loop, including

$$
\sum I=0 \quad \text { (junction rule, valid at any junction) }
$$

those associated with emfs and those of resistive elements, must equal zero.

$$
\sum V=0 \quad \text { (loop rule, valid for any closed loop) }
$$

Or

 In the circuit shown in the figure, find the total resistance of the circuit and the current in the arm CD.Hints: -current through the capacitor (CE) is zero hence branch CEF is not worth in the circuit.
So, equivalent resistance is 5Ω.

Total current is 3 A .
Current is $C D=1 / 2 A$.
7. Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons?
Ans: -The average time elapsed between two successive collisions is known as the relaxation time of free electrons drifting in a conductor.

Or
Find the charge on the capacitor as shown in the circuit.

Hints: - equivalent resistance $=30 \Omega$.

Current $=1 / 15 \mathrm{~A}$.

Potential difference between ends of capacitor $=1 / 15 \times 10=2 / 3$ volt.
Charge on capacitor, $q=C V=2 / 3 \times 6 \mu c=4 \mu c$.

SECTION - D(5 MARKS QUESTIONS)

1. In the circuit shown in the figure, the galvanometer G gives zero deflection. If the batteries A and B have negligible internal resistance, find the value of the resistor R. Hints: - if galvanometer gives zero deflection, it means source of current by 12 V across R and
 voltage across R is 2 V .

Current in the circuit $\mathrm{I}=\frac{\varepsilon}{R_{1}+R_{2}}=\frac{12.0 \mathrm{~V}}{500+R}$
and

$$
\begin{aligned}
& \mathrm{V}=\mathrm{IR}=2.0 \mathrm{~V} \\
& \left(\frac{12.0 \mathrm{~V}}{500+R}\right) R=2.0 \\
& 12 \mathrm{R}=1000+2 \mathrm{R} \\
& 1 \mathrm{OR}=1000 \\
& \Rightarrow \mathrm{R}=100 \Omega
\end{aligned}
$$

2. In the given circuit with a steady current, calculate the potential difference across the capacitor and the charge stored in it.

Hints: - first remove branch $B E$ and find the current in the circuit as, $6 \mathrm{~V} / 3 \Omega=2 \mathrm{~A}$. Now take a closed loop as ABEFA or BEDCA and
 apply loop law to find voltage of capacitor and then charge.
3. (a) State the working principle of a Potentiometer. Draw a circuit diagram to compare EMF of two primary cells. Derive the formula used.
(b) How can the sensitivity of a potentiometer be increased?

Hints: - (a) refer to the video uploaded.
(b) Sensitivity of potentiometer can be increased by: Increasing the length of the potentiometer wire. By reducing the current in the circuit by using a rheostat.
Or

The figure shows an infinite circuit which is formed by the repetition of same chain consisting R_{1} and R_{2}. If $R_{1}=4 \Omega$ and $R_{2}=3 \Omega$, then calculate the resistance between the points M and N .

Hints: - this type of question is already solved during classes, plz refer to the same.
4. First a set of ' n ' equal resistors of ' R ' each are connected in series to a battery of emf ' E ' and internal resistance ' R '. A current / is observed to flow. Then the n resistors are connected in parallel to the same battery. It is observed that the current is increased 10 times. What is n ?
Ans: - 10.
Hints: - for series combination, $R_{S}=n R$, with cell total resistor $=n R+R=$ $(n+1) R$, current, $I=\frac{E}{(n+1) R}$.
Now for parallel combination,
$R p=R / n$. with cell total resistance $=\frac{R}{n}+R=\frac{(n+1) R}{n}$.
Current $I^{\prime}=E / \frac{(n+1) R}{n}=\frac{n E}{(n+1) R}$
From (i) \& (ii), $\mathrm{I}^{\prime}=\mathrm{nl}$.
Hence, $\mathrm{n}=10$.
5. Heating element is marked $210 \mathrm{~V}, 630 \mathrm{~W}$. What is the value of the current drawn by the element when connected to a 210 V dc source.
Hints: $-\mathrm{p}=\mathrm{VI}, \mathrm{I}=\mathrm{p} / \mathrm{V}=3 \mathrm{~A}$.

Or

An emf of a cell is 1.5 V and its internal resistance is 1Ω. For what current drawn from the cell will its terminal potential difference be half of its emf?
Hints: - V = E-Ir, but, V = E/2,
then $\mathrm{E} / 2=\mathrm{E}-\mathrm{Ir}$ or $\mathrm{E} / 2=\mathrm{Ir}$ or, $\mathrm{I}=\mathrm{E} / 2 \mathrm{r}=1.5 / 2 \times 1=0.75 \mathrm{~A}$.
6. Calculate the value of the resistance R in the circuit shown in the figure so that the current in the circuit is 0.2 A . What would be the potential difference between points A and D ?
Hints: -equivalent resistance between

B and D is 10Ω. It means $0.2 A$ of current is divided in to two equal parts of 0.1 A .
Now applying loop law for closed path containing batteries and resistor R.
$-5-(15 \times 0.2)+10-(10 \times 0.2)-0.2 R=0$,

$$
\mathrm{R}=5 \Omega .
$$

7. (a) State the principle of potentiometer. Define potential gradient. Obtain an expression for potential gradient in terms of resistivity of the Potentiometer wire. Hints: -refer to notes or video lesson uploaded.
(b) Figure shows a long potentiometer wire $A B$ having a constant potential gradient. the null points for the two primary cells of emfs E_{1} and E_{2} connected in the manner shown null points are obtained at a distance of $L_{1}=120 \mathrm{~cm}$, and $\mathrm{L}_{2}=300 \mathrm{~cm}$ from the end A. Determine (i) E_{1} / E_{2} and (ii) position of null point for the cell
 E_{1} only.
(i) Let $\mathrm{k}=$ potential gradient in V / cm

$$
\begin{align*}
& \varepsilon_{1}+\varepsilon_{2}=300 k \tag{i}\\
& \varepsilon_{1}-\varepsilon_{2}=120 k \tag{ii}
\end{align*}
$$

We can solve, $\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{7}{3}$
(ii) From equation (i)

$$
\begin{aligned}
& \varepsilon_{1}+\varepsilon_{2}=300 k \\
\therefore \quad & \varepsilon_{1}+\frac{3}{7} \varepsilon_{1}=300 k \quad \Rightarrow \quad \varepsilon_{1}=210 k
\end{aligned}
$$

Therefore, balancing length for cell ε_{1} is 210 cm .
8. The length of a potentiometer wire is 600 cm and it carries a current of 40 mA for a cell of emf 2 V and internal resistance 10Ω, the null point is found to be at 500 cm . If a voltmeter is connected across the cell, the balancing length is decreased by 10 cm . Find (a) the resistance of whole wire (b) reading of voltmeter, and (c) resistance of voltmeter.
(a) $E=K l \rightarrow K=\frac{E}{l}=\frac{2}{500} \frac{\mathrm{Cm}}{\mathrm{cm}}$.

$$
V=K L=\frac{2}{500} \cdot 600=2.4 \mathrm{~V},
$$

where V is the potential difference across potentiometer wire.
The resistance of potentiometer wire is

$$
R=\frac{V}{I}=\frac{2.4 \mathrm{~V}}{40 \cdot 10^{-3} \mathrm{~A}}=60 \Omega .
$$

(b) On connecting voltmeter new balancing length is $l^{\prime}=490 \mathrm{~cm}$. Reading of voltmeter is

$$
U=\frac{l^{\prime}}{L} V=\frac{490}{600} \cdot 2.4=1.96 \mathrm{~V}
$$

(c) The resistance of voltmeter is

$$
R_{\text {voltmeter }}=\frac{U}{I}=\frac{1.96 \mathrm{~V}}{40 \cdot 10^{-3} \mathrm{~A}}=49 \Omega .
$$

Or

What is meant by the sensitivity of a Potentiometer?
A battery E_{1} of 4 V and the variable resistance Rh are connected in series with the wire $A B$ of the Potentiometer. The length of the wire is the Potentiometer is 1 m . When a cell of emf 1.5 V is connected between points A and C , no
 current flows through E2. Length of $\mathrm{AC}=60$ cm.
(i) Find the potential difference between the ends A and B of the Potentiometer.
(ii) Would the method work, if the battery E1 is replaced by a cell of emf 1 V ?
(i) Let V be the pot. Diff. between the ends A and B of the potentiometer wire. Then $\frac{V}{100}=\frac{\varepsilon_{2}}{60}$
or $V=\varepsilon_{2} \times \frac{100}{60}=1.5 \times \frac{100}{60}=2.5 \mathrm{~V}$
(ii) If battery ε_{1} is replaced by a cell of emf 1 V , then method would not work. As $\varepsilon_{1}<\varepsilon_{2}$, the balance point cannot be obtained on the potentiometer wire.
9. (i)Derive an expression for drift velocity of electrons in a conductor. Hence deduce Ohm's law.
(ii) Cross sectional area is increasing linearly from its one end to the other is connected across a battery of V volts. Which of the following quantities remain constant in the wire?
(a)drift speed
(b)current density
(c)electric current
(d) electric field

Justify your answer.
Hints: - (i) refer to drift velocity, (ii) The electric current will remain constant.
Because current is the only quantity that does not depend on
the area of cross- sections of the wire.

Or

(a) Given n resistors each of resistance R, how will you combine them to get (i) maximum (ii) minimum effective resistance? What is the ratio of maximum to minimum resistance?
(b) Given the resistances of $1 \Omega, 2 \Omega, 3 \Omega$, how will you combine them to get an equivalent resistance of: (i) $11 / 3 \Omega$ (ii) $11 / 5 \Omega$ (iii) 6Ω and $6 / 11 \Omega$.
(c) Determine the equivalent resistance of network shown in the figures.

Hints: -(a), (i) series (ii) parallel.
(b) Try by connecting two parallel and one in series or connecting one parallel and two in series.
(c) $16 / 3 \Omega$. and $5 R$.
10. (a) Define the term drift velocity of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time.
(b) A 100 V battery is connected to the electric network as shown. if the power consumed in the 2Ω resistor is 200 W . Determine the power dissipated in the 5Ω resistor.

Hints: - (a) Refer to class notes.
(b) Equivalent resistance of the circuit is 10Ω. hence current is 10 A . Current across, 5Ω is $8 \mathrm{~A}, \mathrm{p}=I^{2} \mathrm{R}=64 \times 5=320 \mathrm{~W}$.

Or

(a) State Kirchhoff's law of an electrical network.
(b) Using Kirchhoff's laws, Calculate the potential difference across the 8Ω resistor.
Hints: - Let I_{1} is the current through the cell of 4 V I_{2} is the current through 6 V .
So current through 8 ohms is $\mathrm{I}_{1}+\mathrm{I}_{2}$.
Taking the loop of first loop,

$-4+2 \mathrm{I}_{1}+8\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+6 \mathrm{I}_{1}=0$
$4 \mathrm{I}_{1}+2 \mathrm{I}_{2}=1$
Taking the loop of second loop,
$-6+4 \mathrm{I}_{2}+8\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+1 \mathrm{I}_{2}=0$
$13 \mathrm{I}_{2}+8 \mathrm{I}_{1}=6$ \qquad (ii)

Solving both, we get, $\mathrm{I}_{1}=1 / 36 \mathrm{~A}$ and $\mathrm{I}_{2}=4 / 9 \mathrm{~A}$,
Total current across 8Ω resistor $=\mathrm{I}_{1}+\mathrm{I}_{2}=17 / 36 \mathrm{~A}$.
$\mathrm{V}=\mathrm{IR}=17 / 36 \times 8=34 / 9$ volt.

CASE STUDY BASED QUESTIONS

Read the following source and answer any four out of the following questions:
Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms. Also, Resistivity, the electrical resistance of a conductor of unit crosssectional area, and unit length. ... A characteristic property of each material, resistivity is useful in comparing various materials on the basis of their ability to conduct electric currents.

1. Resistivity is independent of:
a) nature of material
b) temperature
c) dimensions of material
d) none of the above
2) As compare to short wires, long wires of the same cross section and material have
\qquad resistance.
a) more
b) less
c) same
d) zero
3)As compare to thin wires, thick wires of the same length and material have \qquad resistance.
a) more
b) less
c) same
d) zero
4)The resistance of a wire depends upon:
a. cross-sectional area
b. length of wire
c. wire's nature
d. all of the above
5)A copper wire having the same size as steel wire have:
e. more resistance
f. less resistance
g. same resistance
h. none of the above

ASSERTION REASONING QUESTIONS

Directions: These questions consist of two statements, each printed as
Assertion and Reason. While answering these questions, you are required to choose any one of the following four responses.
(a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
(b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
(c) If the Assertion is correct but Reason is incorrect.
(d) If both the Assertion and Reason are incorrect.
Q.1. Assertion: In a simple battery circuit, the point of the lowest potential is positive terminal of the battery.
Reason : The current flows towards the point of the higher potential, as it does in such a circuit from the negative to the positive terminal.

Answer - d
Q.2. Assertion: A larger dry cell has higher emf.

Reason: The emf of a dry cell is proportional to its size.

Answer- d
Answer
Q.3. Assertion: Voltmeter is connected in parallel with the circuit.

Reason: Resistance of a voltmeter is very large.

Answer - b
Q.5. Assertion: Ohm's law is applicable for all conducting elements.

Reason: Ohm's law is a fundamental law.

Answer - c
Q.6. Assertion: An electric bulb becomes dim, when the electric heater in parallel circuit is switched on.
Reason: Dimness decreases after sometime.

Answer-b

Prepared by	Checked by :
Ms. Anu Annie Mathews	HOD - SCIENCE

