

1	If α and β are the zeroes of $2x^2 - 3x-5$, Evaluate: a) $\frac{1}{\alpha} + \frac{1}{\beta}$ b) $\alpha^2 + \beta^2$
2	Write a quadratic polynomial whose product of zeroes and sum of zeroes are $\frac{3}{4}$ and $\frac{-1}{2}$ respectively.
3	If $(x - 2)$ is a factor of $x^3 + ax^2 + bx + 16$ and $a - b = 6$, find the values of 'a' and 'b'.
4	Find zeroes of the polynomial $3x^2 - 10x - 8$ and verify the relation between zeroes and coefficients.
5	If $x = \frac{3}{2}$ is a zero of $6x^2 - kx - 3$, then find k and the remaining zero
6	What must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$
7	Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient a) $4x^2 - 4x + 1$ b) $x^2 - 3$ c) $\sqrt{3x^2 - 8x + 4\sqrt{3}}$
8	If α and β are zeroes of the polynomial $x^2 - 2x - 15$, then form a quadratic polynomial whose zeroes are 2α and 2β
9	Find the polynomial, whose zeroes are $(2 + \sqrt{3})$ and $(2 - \sqrt{3})$
10	Form a quadratic polynomial, one of whose zero is $2 + \sqrt{5}$ and the sum of zeroes is 4
11	If α and β are the zeroes of the polynomial $2y^2 + 7y + 5$, write the value of $\alpha + \beta + \alpha\beta$
12	If one root of the polynomial $5x^3 + 13x + k$ is reciprocal of the other, then find the value of k?
13	If α and β are the zeroes of the polynomial $f(x) = 6x^2 + x - 2$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$
14	If α and β are the zeroes of the polynomial $f(x) = x^2 - 5x + k$ such that $\alpha - \beta = 1$, find <i>k</i>
15	If α and β are the zeroes of quadratic polynomial $2x^2 + 5x + k$, find the value of k such that $(\alpha + \beta)^2 - \alpha\beta = 24$