Class: XII	Department: SCIENCE 2021-22 SUBJECT: PHYSICS	Date: 06.05.2021
Worksheet No.: 2	Topic: ELECTRIC POTENTIAL	NOTE: A4 FILE FORMAT
NAME OF THE STUDENT:	CLASS \& SEC:	ROLL NO.

QUESTIONS BASED ON BOARD PAPERS

SECTION A

Directions (Q1-Q6) Select the most appropriate option from those given below each question
[1]The graph shows the variation of potential with distance from a fixed point charge, find the electric field 3 m from the point charge.

[a] $2 \mathrm{v} / \mathrm{m}[\mathrm{b}] 3 \mathrm{v} / \mathrm{m}[\mathrm{c}]-.1.5 \mathrm{v} / \mathrm{m}[\mathrm{d}]-3 \mathrm{v} / \mathrm{m}$
[c]
[2] When charge is supplied to a conductor, its potential depends upon
[a] amount of charge [b] geometry and size of the conductor [.c] both [a]\&[b]
[d]only on [a]
[c]
[3] The variation of potential V with r \& electric field with r for a point charge is correctly shown in the graphs

[b]
[4] A dipole is placed parallel to electric field .If W is the workdone in rotating the dipole from 0^{0} to 60°, then work done in rotating it from o° to 180° is
[a] $2 \mathrm{~W}[\mathrm{~b}] 3 \mathrm{~W}[\mathrm{c}] 4 \mathrm{~W}[\mathrm{~d}] \frac{\mathrm{W}}{2}$
[c]
[5] A parallel plate capacitor is charged by a battery. Once it is charged ,battery is removed. Now a dielectric material is inserted between the plates of the capacitor, which of the following does not change?
[a] Electric field[b] potential difference [c.] charge on the plates[d] energy stored [c]
[6] The potential at the centre of the square is

[a] zero [b] 2 kq [c] $\frac{k q}{a^{2}}$ [d] $\frac{k q}{2 a^{2}}$
[a]

SECTION B[2 marks]

[7] A $4 \mu \mathrm{~F}$ capacitor is charged by a 200 v supply.It is then disconnected from the supply and is connected to another $2 \mu \mathrm{~F}$ capacitor. How much energy of the first capacitor is lost in the form of radiation?
$\mathrm{E} 1=1 / 2 \mathrm{C} 1 \mathrm{~V} 1^{2}$
$\mathrm{E} 2=1 / 2 \mathrm{C}_{\mathrm{p}} \mathrm{V}^{2}$
Energy lost $=\mathrm{E} 1-\mathrm{E} 2=2.67 \times 10^{-2} \mathrm{~J}$
[8]The electric field intensity at a point due to a point charge is $20 \mathrm{~N} / \mathrm{C}$ and the electric potential is $10 \mathrm{~J} / \mathrm{C}$. Find the magnitude of the charge and distance of the point from charge.
$\mathrm{V}=\frac{K Q}{r}, \mathrm{E}=\mathrm{V} / \mathrm{d}$
$\mathrm{Q}=0.55 \times 10^{-9} \mathrm{C}$
[9]A capacitor with air between the plates has a capacitance of 8 F .The separation between the plates is now reduced by half and the space between them is filled with a medium of dielectric constant 5.Calculate the value of the capacitance of the capacitor in second case.
$\mathrm{C}=\frac{\epsilon o A}{d}$

$$
\begin{aligned}
\mathrm{C}^{1} & =\epsilon r \frac{\epsilon o A}{\frac{d}{2}} \\
\mathrm{C}^{1} & =80 \mathrm{~F}
\end{aligned}
$$

SECTION C[3 marks]

[10] A charge $+1 \mu$ c is placed at a distance of 0.1 m from another charge of $+4 \mu \mathrm{c}$ in air. At what point on the line joining the charges, is the electric field intensity zero?
[$\mathrm{x}=10 / 3 \mathrm{~cm}$ from $+1 \mu \mathrm{c}$]
[11]Two point charges of $+3 \times 10^{-19} \mathrm{C}$ and $+12 \times 10^{-19} \mathrm{C}$ are separated by a distance of 2.5 m . Find the point on the line joining them where electric field intensity is zero.
[$\mathrm{x}=5 / 3 \mathrm{cmfrom} 12 \times 10^{-19} \mathrm{c}$]
[12]A neutral hydrogen molecule has two protons and two electrons. If one of the electrons is removed, we get a hydrogen molecule ion $\left(\mathrm{H}_{2}\right)$. In the ground state of H_{2} the protons are separated by roughly $1.5 \mathrm{~A}^{\circ}$ and the electron is roughly $1 \mathrm{~A}^{\circ}$ from each proton. Estimate the potential energy of the system.
$\mathrm{U}=\frac{K q 1 q 2}{r 12}+\frac{k q 2 q 3}{r 23}+\frac{k q 3 q 1}{r 31}=-19.2 \mathrm{eV}$
[13][a]Define electrostatic potential energy[b] Derive the expression for electrostatic potential energy of a system of 3 charges q1, q2 and q3
[14] Derive the expression for the capacitance of a capacitor in presence of a dielectric

SECTION D [5 marks]

[15]Derive the expression for capacitance of a parallel plate capacitor [16] Derive the expression for energy stored in a capacitor [17]What is an electric dipole. Derive an expression for electrostatic potential energy of an electric dipole in an external electric field of strength E

