

INDIAN SCHOOL AL WADI AL KABIR

Department of Mathematics, 2021-2022

CLASS: XII

Chapter: 2 – Relations & Function

25-04-2021

	1-mark questions							
Q.1.	Check whether the function $f: R \rightarrow R$ defined as $f(x)=x^3$ is one-one or not.							
	How many reflexive relations are possible in a set A whose $n(A) - 2$							
Q.2.	How many reflexive relations are possible in a set A whose $n(A) = 3$.							
Q.3.	A relation R in $S = \{1,2,3\}$ is defined as $R = \{(1,1), (1,2), (2,2), (3,3)\}$. Which element(s) of relation R be removed to make R an equivalence relation?							
Q.4.	A relation R in the set of real numbers R defined as $R = \{(a, b): \sqrt{a}=b\}$ is a function or not. Justify							
Q.5.	An equivalence relation R in A divides it into equivalence classes A_1 , A_2 , A_3 . What is the value of $A_1 \cup A_2 \cup A_3$ and $A_1 \cap A_2 \cap A_3$							
Q.6.	If $f(x) = x + 7$ and $g(x) = x - 7$, $x \in R$, find (fog) (7)							
Q.7.	If $f(x)$ is an invertible function, find the inverse of $f(x) = \frac{3x-2}{5}$.							
Q.8.	What is the range of the function $f(x) = \frac{ x-1 }{(x-1)}$?							
	Descriptive questions							
Q.9.	Check whether the relation R in the set Z of integers defined as $R = \{(a, b) : a+b \text{ is "divisible by } 2"\}$ is reflexive, symmetric or transitive. Write the equivalence class containing 0 i.e. [0].							
Q.10	Show that the relation R in the set of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither							
0.11	reflexive, nor symmetric, nor transitive.							
Q.11	Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b); a, b \in Z, and (a, b), b \in Z, and (a, b), b \in Z, and (b, b), b \in Z, and (b, b), b \in Z, and (c, b), $							
	$(a - b)$ is divisible by 5.} Prove that R is an equivalence relation.							
Q12.	Show that the relation S in the set R of real numbers, defined as $S = \{(a, b): a, b \in R \text{ and } a \leq b^\circ\}$ is neither reflexive, nor symmetric nor transitive.							
Q13.	Consider $f: R \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that <i>f</i> is invertible with							
	$f^{-1}(y) = \left(\frac{\sqrt{y+6} - 1}{3}\right).$							
Q14.	Consider $f: \mathbb{R}_+ \to [4, \infty]$ given by $f(x) = x^2 + 4$. Show that <i>f</i> is invertible with the inverse (f^{-1})							
	of <i>f</i> given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.							

Q15.	Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show							
	that <i>f</i> is one-one and onto and hence find f^{-1} .							
Q16.	Show that f: N \rightarrow N, given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$							
	is both one-one and onto.							
Q17.	Let $f: W \to W$, be defined as $f(x) = x - 1$, if x is odd and $f(x) = x + 1$, if x is even. Show that f is invertible. Find the inverse of f , where W is the set of all whole numbers.							
Q18.	Show that the relation R defind by (a, b) R (c, d) \Rightarrow a + d = b + c on the A×A, where A = {1, 2, 3,, 10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c, d ϵ A.							
Q19.	Let $f : \mathbb{N} \to \mathbb{N}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f : \mathbb{N} \to \mathbb{S}$ is invertible (where S is range of f). Find the inverse of f and hence find $f^{-1}(31)$ and $f^{-1}(87)$.							
Q20.	If f, g : R \rightarrow R be two functions defined as $f(x) = x + x$ and $g(x) = x - x$, $\forall x \in \mathbb{R}$ Then find fog and gof. Hence find fog(-3), fog(5) and gof (-2).							

Answers	1	one-one	2	2 ⁶ reflexive relations	3.	(1,2)	4	$\sqrt{a=b}$ is not a function.
	5	$A_1 \cup A_2 \cup A_3 = A and A_1 \cap A_2 \cap A_3 = \emptyset$	6	7	7	$f^{1}(y) = (5y + 2)/3$	8	{-1,1}
	9	R is an equivalence relation in Z [0]={4, -2, 0, 2, 4,}	10		11		12	
	13		14		15	$f^{1}(y) =$ (2-3y)/(1-y)	16	
	17		18	$[3, 4] = \\ \{(1,2), (2,3), (3,4), (4,5), \\ (5,6), (6,7), (7,8), (8,9), \\ (9,10)\}$	19	$f^{-1}(x) = rac{-3 + \sqrt{x - 6}}{2}; \ x \ge 6$	20	