INDIAN SCHOOL AL WADI AL KABIR
 Class XII, Applied Mathematics
 CHAPTER SUMMARY- MATRICS AND DETERMINANTS
 25-04-2021

TOPIC

- Define matrix
- Different kinds of matrices
- The size / order of matrices
- Equality of two matrices
- Transpose of a matrix
- Symmetric and skew symmetric matrix
- Operations like addition \& subtraction on matrices of same order
- Multiplication of two matrices of appropriate order
- Multiplication of a scalar with matrix
- Inverse of a square matrix
- Elementary row operations and use it to find the inverse of a matrix
- Properties of inverse of matrices
- Determinant of a square matrix
- Elementary properties of determinants
- Solve the system of simultaneous equations using i) Cramer's Rule ii) Inverse of coefficient matrix iii) Row reduction method
- Real life problems into a system of simultaneous linear equations and solve the equations.
- Simple applications of matrices and determinants in different areas of mathematics.
- Real life applications particularly for Leontief input output model for two variables in economics

DEFINITIONS

Types of matrices:
Row matrix: A matrix is said to be a row matrix if it has only one row. E.g. $\quad\left[\begin{array}{lll}a & b & c\end{array}\right]$
Column matrix: A matrix is said to be a column matrix if it has only one column. E.g. $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
Square matrix: A matrix in which the number of rows is equal to the number of columns.
E.g. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Diagonal matrix:
A square matrix $A=\left[a_{i j}\right]$ is said to be a diagonal matrix
if its all non diagonal elements are zero. E.g. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
Scalar Matrix: A diagonal matrix is said to be a scalar matrix, if its diagonal elements are equal.
E.g. $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$

Identity Matrix: A square matrix in which elements in the diagonal are all 1 and rest are all zeroes. E.g. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Zero matrix: A matrix is said to be a zero matrix if all its elements are zeroes.
Symmetric matrix: A square matrix is said to be symmetric if $A^{T}=A$
Skew symmetric matrix: A square matrix is said to be symmetric if $A^{T}=-A$
Singular matrix: A square matrix A is said to be a singular matrix if $|A|=0$.

IMPORTANT POINTS/PROPERTIES

1. Two matrices are equal if they are of the same order and their corresponding elements are equal
2. For Addition/subtraction of two matrices, their order should be same.
3. If A is a matrix of order $m x n, B$ is a matrix of order $n x p$ then Product $A B$ will be a matrix of order mxp .
4. Matrix multiplication is not commutative. $A B \neq B A$
5. $(A+B)^{T}=A^{T}+B^{T}$
6. $(A B)^{T}=B^{T} A^{T}$
7. $(A B)^{-1}=B^{-1} A^{-1}$
8. For any square matrix $A, A=P+Q, P$ is a symmetric and Q is a skew symmetric matrix and

$$
P=\frac{1}{2}\left(A+A^{T}\right) \text { and } Q=\frac{1}{2}\left(A-A^{T}\right)
$$

9. Inverse of a matrix: If A is a square matrix, then A is called invertible if and only if there exists a square matrix B such that $A . B=I=B . A$.
Note: $\quad\left(A^{-1}\right)^{-1}=A$
10. Elementary row wise transformation:

To find A^{-1} using elementary row operations, write $A=I A$ and apply a sequence of row operations on $A=I A$ till we get $I=B A$. The matrix B will be the inverse of A . (where I is represents identity matrix)
Row operations: (i) $R_{i} \leftrightarrow R_{j}$
(ii) $R_{i} \rightarrow k R_{i}, k \neq 0$
(iii) $R_{i} \rightarrow R_{i}+k R_{j}$

Note: In case after applying one or more elementary row operations on $A=I A$, if we obtain all zeros in one or more rows of the matrix on LHS, then A^{-1} does not exist.
11. $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
12. Minor of an element $a_{i j}$ of the determinant of matrix A is the determinant obtained by deleting $i^{\text {th }}$ row and $j^{t h}$ column, and it is denoted by $M_{i j}$
13. Co-factor of an element $a_{i j}$ is given by $A_{i j}=(-1)^{i+j} M_{i j}$
14. The sum of the products of elements of any row (or column) of a determinant with their corresponding cofactors is equal to the value of the determinant.

$$
|A|=a_{11} A_{11}+a_{12} A_{21}+a_{13} A_{13}
$$

15. \quad A. $\operatorname{adj} A=|A| . I$
16. If $\mathrm{A}\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$, then area of triangle $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ If the points are collinear, then area $=0$
17. $|A \cdot \operatorname{adj} A|=|A|^{n}$, where n is the order of the matrix A.
18. $|\operatorname{adj} A|=|A|^{n-1}$, where n is the order of matrix A .
19. $|k A|=k^{n}|A|$, where k is a constant and n is the order of matrix A .
20. $|A B|=|A||B|$
21. $|A|=\left|A^{T}\right|$
22. If any two row or two columns of a determinant are interchanged, then the sign of the value of determinant changes,
23. If all the elements of a row or a column of a determinant are zeroes OR

Any two rows or columns of a determinant are identical OR
If any two rows or columns of determinant are proportional, then the value of the determinant is zero.
24. Multiplying a determinant by k means multiplying the elements of only one row (or one column) by k
25. If to each element of a row (or a column) of a determinant the equal multiples of corresponding elements of other rows(columns) are added, then value of determinant remains the same.
26. If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the sum of two or more determinants.
27. Leontief input -output model:
$(I-A) X=D$, where the matrix A is called input-output coefficient matrix or technology matrix, X is the output matrix and D is the demand matrix.
Note: The matrix $(I-A)$ is called Leontief matrix.
28. Hawkins-Simon conditions:

The system is viable if
(1) $|I-A|>0$
(2) (2) The diagonal elements of the Leontief matrix $(I-A)$ should all be positive.

