				INDIAN SCHOOL AL WADI AL KABIR CLASS IX, MATHEMATICS MCQ - WORKSHEET ON RATIONAL NUMBERS 25-04-2021				
Q.1.	In between two rational number there is/are:							
	A	Exactly one rational number	B	Infinitely many rational	C	Many irrational numbers	D	Many irrational numbers
Q.2.	A rational number equivalent to $\frac{5}{7}$ is:							
	A	$\frac{15}{17}$	B	$\frac{25}{27}$	C	$\frac{10}{14}$	D	$\frac{10}{27}$
Q.3.	If the decimal representation of a rational number is non-terminating, non-recurring then the number is:							
	A	a natural number	B	a whole number	C	a fraction	D	an irrational number
Q.4.	Which of the following is irrational?							
	A	$\sqrt{\frac{4}{9}}$	B	$\frac{\sqrt{12}}{\sqrt{3}}$	C	$\sqrt{5}$	D	$\sqrt{81}$
Q.5.	On adding $2 \sqrt{3}$ and $3 \sqrt{2}$, we get							
	A	$5(\sqrt{3}+\sqrt{2})$	B	$5 \sqrt{5}$	C	$2 \sqrt{3}+3 \sqrt{2}$	D	None of these
Q.6.	$\sqrt{12} \times \sqrt{15}$ is equal to:							
	A	$5 \sqrt{6}$	B	$6 \sqrt{5}$	C	$10 \sqrt{5}$	D	$\sqrt{25}$
Q.7.	The value of $\sqrt[4]{(16)^{-2}}$							
	A	$\frac{1}{16}$	B	$\frac{1}{4}$	C	$\frac{1}{2}$	D	4
Q.8.	On simplifying $8^{3} \times 2^{4}$, we get							
	A	16^{7}	B	2^{13}	C	2^{10}	D	8^{4}

Q.9.	For rationalizing the denominator of the expression $\frac{1}{\sqrt{12}}$ we multiply and divide by								
	A	$\frac{1}{\sqrt{12}}$	B	12	C	$\sqrt{2}$		D	$\sqrt{3}$
Q.10.	Which of the following is irrational?								
	A	$\begin{gathered} 0.4014001400 \\ 014 \ldots \end{gathered}$	B	0.14	C	$0 . \overline{1416}$		D	$0.14 \overline{16}$
Q.11.	The decimal expansion of $\sqrt{2}$ is								
	A	finite decimal	B	1.4121	C	non-terminating recurring		D	non-terminating non-recurring
Q.12.	Can we write 0 in the form of $\frac{p}{q}$								
	A	Yes	B	No	C	Cannot be explained		D	None of the above
Q.13.	Which of the following is equal to X^{3}								
	A	$\mathrm{X}^{6}-\mathrm{X}^{3}$	B	$\mathrm{X}^{6} . \mathrm{X}^{3}$	C	$\frac{X^{6}}{X^{3}}$		D	$\left(X^{6}\right)^{3}$
Q.14.	The value of $\frac{2^{0}+7^{0}}{5^{0}}$ is:								
	A	$\frac{9}{5}$	B	0	C	$\frac{1}{5}$		D	2
Q.15.	The rational number $\frac{3}{40}$ is equal to:								
	A	0.75	B	0.12	C	0.012		D	0.075
$\begin{aligned} & w \\ & \sqrt[n]{4} \\ & 3 \\ & 3 \\ & 2 \\ & 4 \end{aligned}$	Q.1. B		Q. 2 C		Q.3. D		Q. 4 C		
	Q.5. C		Q. 6 B		Q. 7 C		Q. 8 B		
	Q.9. D		Q. 10 A		Q.11. D		Q. 12 A		
	Q.13. C		Q.14. D		Q. 15 D				

