INDIAN SCHOOL AL WADI AL KABIR

Department of Mathematics, 2020-2021

Revision - AP, GP, 3D, Conics, Straight Lines

1. If a, b, c are in $A P$ then
(a) $b=a+c$
(b) $2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
(c) $b^{2}=a+c$
(d) $2 b^{2}=a+c$
2. If $1 /(b+c), 1 /(c+a), 1 /(a+b)$ are in AP then
(a) a, b, c are in AP
(b) $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in AP
(c) $1 / a, 1 / b, 1 / c$ are in AP (d) None of these
3. The third term of a geometric progression is 4 . The product of the first five terms is
(a) 4^{3}
(b) 4^{5}
(c) 4^{4}
(d) none of these
4. The first term of a GP is 1 . The sum of the third term and fifth term is 90 . The common ratio of GP is
(a) 1
(b) 2
(c) 3
(d) 4
5. If the third term of an A.P. is 7 and its 7 th term is 2 more than three times of its third term, then the sum of its first 20 terms is
(a) 228
(b) 74
(c) 740
(d) 1090
6. For a G.P. the ratio of the 7 th and the third terms is 16 . The sum of 9 terms is 2555 . What is the first term?
(a) 7
(b) 5
(c) 4
(d) 9
7. The equation of the locus of a point, whose abscissa and ordinate are always equal is
(a) $x+y+1=0$
(b) $x-y=0$
(c) $x+y=1$
(d) none of these.
8. The equation of straight line passing through the point $(1,2)$ and parallel to the line $y=3 x+1$ is
(a) $y+2=x+1$
(b) $y+2=3(x+1)$
(c) $y-2=3(x-1)$
(d) $y-2=x-1$
9. The equation of the line which cuts off equal and positive intercepts from the axes and passes through the point (α, β) is
(a) $x+y=\alpha+\beta$
(b) $x+y=\alpha$
(c) $x+y=\beta$
(d) None of these

10 . The equation of the line passing through the point $(2,3)$ with slope 2 is
(a) $2 x+y-1=0$
(b) $2 x-y+1=0$
(c) $2 x-y-1=0$
(d) $2 x+y+1=0$
11. The slope of the line $a x+b y+c=0$ is
(a) a / b
(b) $-\mathrm{a} / \mathrm{b}$
(c) $-\mathrm{c} / \mathrm{b}$
(d) c/b
12. Equation of the line passing through $(0,0)$ and slope m is
(a) $y=m x+c$
(b) $x=m y+c$
(c) $y=m x$
(d) $x=m y$
13. The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150 degrees with the positive direction of the y-axis. Then the equation of line is
(a) $x+y=14$
(b) $\sqrt{ } 3 y+x=14$
(c) $\sqrt{ } 3 x+y=14$
(d) None of these
14. The equation of the line through the points $(1,5)$ and $(2,3)$ is
(a) $2 x-y-7=0$
(b) $2 x+y+7=0$
(c) $2 x+y-7=0$
(d) $x+2 y-7=0$
15. The perpendicular distance from the point $(3,-4)$ to the line $3 x-4 y+10=0$
(a) 7
(b) 8
(c) 9
(d) 10
16. The equation of parabola with vertex at origin the axis is along x-axis and passing through the point $(2,3)$ is
(a) $y^{2}=9 x$
b) $y^{2}=9 x / 2$
(c) $y^{2}=2 x$
(b) $y^{2}=2 x / 9$
17. At what point of the parabola $x^{2}=9 y$ is the abscissa three times that of ordinate
(a) $(1,1)$
(b) $(3,1)$
(c) $(-3,1)$
(d) $(-3,-3)$
18. The number of tangents that can be drawn from $(1,2)$ to $x^{2}+y^{2}=5$ is
(a) 0
(b) 1
(c) 2
(d) More than 2
19. In an ellipse, the distance between its foci is 6 and its minor axis is 8 then its eccentricity is
(a) $4 / 5$
(b) $1 / \sqrt{5} 2$
(c) $3 / 5$
(d) $1 / 2$
20. The equation of a hyperbola with foci on the x-axis is
(a) $x^{2} / a^{2}+y^{2} / b^{2}=1$
(b) $x^{2} / a^{2}-y^{2} / b^{2}=1$
(c) $x^{2}+y^{2}=\left(a^{2}+b^{2}\right)$
(d) $x^{2}-y^{2}=\left(a^{2}+b^{2}\right)$
21. If the end points of a diagonal of a square are $(1,-2,3)$ and $(2,-3,5)$ then the length of the side of the square is
(a) $\sqrt{ } 3$ unit
(b) $2 \sqrt{3}$ unit
(c) $3 \sqrt{ } 3$ unit
(d) $4 \sqrt{ } 3$ unit

Answers

1. (b) $2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
2. (b) $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in AP
3. (b) 4^{5}
4. (c) 3
5. (c) 740
6. (b) 5
7. (b) $x-y=0$
8. (c) $y-2=3(x-1)$
9. (a) $x+y=\alpha+\beta$
10. (c) $2 \mathrm{x}-\mathrm{y}-1=0$
11. (b) $-\mathrm{a} / \mathrm{b}$
12. (c) $y=m x$
13. (c) $\sqrt{3} x+y=14$
14. (c) $2 x+y-7=0$
15. (a) 7
16. (b) $y^{2}=9 x / 2$
17. (b) $(3,1)$
18. (b) 1
19. (c) $3 / 5$
20. (b) $x^{2} / a^{2}-y^{2} / b^{2}=1$
21. (a) $\sqrt{ } 3$ unit
