
MySQL 

DDL and DML 

Statements



DDL:

DDL is short name of Data Definition Language, which deals with 

database schemas and descriptions, of how the data should reside in 

the database.

CREATE - to create a database and its objects like (table, index, 

views, store procedure, function, and triggers)

ALTER - alters the structure of the existing database

DROP - delete objects from the database

https://www.w3schools.in/mysql/php-mysql-create/


TRUNCATE - remove all records from a table, including all spaces 

allocated for the records are removed.

COMMENT - add comments to the data dictionary

RENAME - rename an object



DML:

DML is short name of Data Manipulation Language which deals 

with data manipulation and includes most common SQL statements 

such SELECT, INSERT, UPDATE, DELETE, etc., and it is used to 

store, modify, retrieve, delete and update data in a database.

SELECT - retrieve data from a database

INSERT - insert data into a table

UPDATE - updates existing data within a table

DELETE - Delete all records from a database table

MERGE - UPSERT operation (insert or update)

CALL - call a PL/SQL or Java subprogram

EXPLAIN PLAN - interpretation of the data access path

LOCK TABLE - concurrency Control



MySQL SELECT:

MySQL SELECT statement is used to fetch data from a 

database table.

SYNTAX:

SELECT * FROM table_name

SELECT column_name(s) FROM table_name



MySQL WHERE:

The WHERE clause is used to filter records at the time of 

SELECT..

SYNTAX:

SELECT [*] FROM [Table_name] 

WHERE [condition1] [AND [OR]] 

[condition2]...



- WHERE clause can be used to apply various 

comma separated condition, in one or more 

tables.

- Using the WHERE clause to select the specified 

condition.

- Specific conditions using AND or OR operators.

- A WHERE clause can be used with DELETE or 

UPDATE.



SELECT without Table:

You can also issue SELECT without a table. For example, you 

can SELECT an expression or evaluate a built-in function.

mysql> SELECT 1+1;

+-----+

| 1+1 |

+-----+

|   2 |

+-----+

mysql> SELECT NOW();

+---------------------+

| NOW()               |

+---------------------+

| 2012-10-24 22:13:29 |

+---------------------+



// Multiple columns

mysql> SELECT 1+1, NOW();

+-----+---------------------+

| 1+1 | NOW()               |

+-----+---------------------+

|   2 | 2012-10-24 22:16:34 |

+-----+---------------------+



PRODUCT TABLE
Database: product_DB

Table: product_TB

productID

INT

productCode

CHAR(3)

name

VARCHAR(30)

quantity

INT

price

DECIMAL(10,2)

1001 PEN Pen Red 5000 1.23

1002 PEN Pen Blue 8000 1.25

1003 PEN Pen Black 2000 1.25

1004 PEC Pencil 2B 10000 0.48

1005 PEC Pencil 2H 8000 0.49



-- List all rows for the specified columns

SELECT name, price FROM products;

+-----------+-------+

| name      | price |

+-----------+-------+

| Pen Red   |  1.23 |

| Pen Blue  |  1.25 |

| Pen Black |  1.25 |

| Pencil 2B |  0.48 |

| Pencil 2H |  0.49 |

+-----------+-------+



Comparison Operators:
For numbers (INT, DECIMAL, FLOAT), you could use comparison operators: '=' (equal 

to), '<>' or '!=' (not equal to), '>' (greater than), '<' (less than), '>=' (greater than or 

equal to), '<=' (less than or equal to), to compare two numbers. For example, price 

> 1.0, quantity <= 500.

mysql> SELECT name, price FROM products WHERE price < 1.0;

+-----------+-------+

| name      | price |

+-----------+-------+

| Pencil 2B |  0.48 |

| Pencil 2H |  0.49 |

+-----------+-------+

mysql> SELECT name, quantity FROM products WHERE quantity <= 2000;

+-----------+----------+

| name      | quantity |

+-----------+----------+

| Pen Black |     2000 |

+-----------+----------+



For strings, you could also use '=', '<>', '>', '<', '>=', '<=' to 

compare two strings (e.g., productCode = 'PEC'). The ordering 

of string depends on the so-called collation chosen. For 

example,

mysql> SELECT name, price FROM products WHERE 

productCode = 'PEN';

+-----------+-------+

| name      | price |

+-----------+-------+

| Pen Red   |  1.23 |

| Pen Blue  |  1.25 |

| Pen Black |  1.25 |

+-----------+-------+


