

INDIAN SCHOOL AL WADI AL KABIR
 Department: Mathematics

Class IX Practice Worksheet - 2
10-01-2021

Qn. no:	Part A
Section I (1 mark each.)	
Q.1.	Find the coefficient of x^{2} in the expansion of $(x-2)^{3}$
Q.2.	Find $525^{2}-475^{2}$, using suitable identity.
Q.3.	Find the degree of the polynomial $\left(x^{3}+5\right)\left(4-x^{5}\right)$
Q.4.	Find the value of k, if $(\mathrm{x}-2)$ is a factor of $\mathrm{p}(\mathrm{x})=2 x^{2}+3 \mathrm{x}-\mathrm{k}$.
Q.5.	Find the value of $x^{2}+y^{2}$, if $\mathrm{x}+\mathrm{y}=9$ and $\mathrm{xy}=20$.
Q.6.	What is the area of an equilateral triangle with side 2 cm ?
Q.7.	If the sum of two sides of a triangle is 17 cm and its semi-perimeter is 15 cm, then find the length of its third side.

Section II ($\mathbf{1} \mathbf{4}=\mathbf{4}$ marks)
 Case study-based question

Q. 8 A triangular park ABC has sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and 50 m as shown in the figure. There is a gate 3 m wide on one side of the park. A gardener Dhania has to put fence all around it and also plant grass inside.

(a)

Find the semi-perimeter of the park.
(i)
(ii) 125 m
(iii) 250 m
(iv) 253 m

(b)	How much area does she need to plant grass? (i) $375 m^{2}$ (ii) $375 \sqrt{5} m^{2}$ (iii) $375 \sqrt{15} m^{2}$ (iv) $750 m^{2}$
(c)	Find the length of the wire needed to fence the park leaving a space 3 m wide for a gate on one side. (i) 247 m (ii) 117 m (iii) 123 m (iv) 128 m
(d)	Find the cost of fencing at the rate of ₹ 20 per metre. (i) ₹2340 (ii) ₹ 2460 (iii) ₹ 4560 (iv) ₹ 4940
	Part B: Section III (2 marks each)
Q.9.	Show that $(\mathrm{x}-1)$ is a factor of the polynomial $\mathrm{p}(\mathrm{x})=2 x^{3}-3 x^{2}+7 \mathrm{x}-6$.
Q.10.	If the area of an equilateral triangle is $81 \sqrt{3} \mathrm{~cm}^{2}$, then find its perimeter.
Q.11.	Find the area of a triangle whose sides are $11 \mathrm{~m}, 60 \mathrm{~m}$ and 61 m .
Q. 12.	The length of sides of a triangle are in the ratio 3:4:5 and perimeter is 144 cm . Find its area.
Q.13.	Without plotting the points indicate the quadrant in which they lie, if (i) ordinate is 5 and abscissa is -3. (ii) abscissa is -2 and ordinate is -6
	Section IV (3 marks each)
Q.14.	Check whether the polynomial $\mathrm{p}(\mathrm{x})=3 x^{4}+4 x^{3}-10 x^{2}-5 \mathrm{x}-30$ is a multiple of $(\mathrm{x}-2)$ and $(\mathrm{x}+3)$.
Q.15.	The sides of a triangle are $120 \mathrm{~m}, 170 \mathrm{~m}$ and 250 m . Find area of the triangle and also find its height when the base is 250 m .
Q.16.	Find the area of an isosceles triangle whose equal sides are 15 cm each and third side is 12 cm .
Q.17.	Find the value of $27 x^{3}+8 y^{3}$, if $3 x+2 y=20$ and $x y=\frac{11}{9}$
Q.18.	Factorize $x^{3}-3 x^{2}-9 x-5$
Q.19.	Factorize: $8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$

Q.20.	The maximum temperatures (in degree Celsius) reported in a city for the month of April by the Meteorological Department, are given below: $\begin{aligned} & 27.4,28.3,23.9,23.6,25.4,27.5,28.1,30.5,29.7,30.6,28.4,31.7,32.2,32.6,33.4, \\ & 35.7,36.1,37.2,38.4,40.1,40.2,40.5,41.1,42.0,42.1,42.3,42.4,42.9,43.1,43.2 \end{aligned}$ Construct a continuous grouped frequency distribution table.						
	Section V (5 marks each)						
Q.21.	If the polynomial $3 x^{3}+\mathrm{a} x^{2}-11 \mathrm{x}+3$ is exactly divisible by $(\mathrm{x}-1)$, then find the value of a . Hence, factorize the polynomial.						
Q.22.	Plot the points $\mathrm{A}(1,3), \mathrm{B}(1,-1), \mathrm{C}(7,-1)$ and $\mathrm{D}(7,3)$. Join the points in order and identify the figure thus formed. Write the co-ordinates of the point of intersection of the diagonals.						
Q.23.	Find the area of the sha be made from this area	ded re [Use	ion in the fi $\sqrt{105}=10.2$	re. H	w many triangular	ower 22	eds of $6 m^{2}$ can
ANSWERS							
Q. 1	-6	Q. 2	50000	Q. 3	8	Q. 4	$\mathrm{k}=14$
Q. 5	41	Q. 6	$\sqrt{3} \mathrm{~cm}^{2}$	Q. 7	13 cm	Q. 8	$\begin{aligned} & \text { (a) (ii), (b) (iii) } \\ & \text { (c)(i), (d) (iv) } \end{aligned}$
Q. 10	54 cm	Q. 11	$330 m^{2}$	Q. 12	$864 \mathrm{~cm}^{2}$	Q. 13	(i) II Quadrant (ii) III Quadrant
Q. 14	Multiple of (x-2), Not a multiple of $(x+3)$	Q. 15	$\begin{gathered} 9000 \mathrm{~m}^{2}, \\ 72 \mathrm{~m} \\ \hline \end{gathered}$	Q. 16	$18 \sqrt{21} \mathrm{~cm}^{2}$	Q. 17	7560
Q. 18	$\begin{gathered} (x+1)(x+1) \\ (x-5) \end{gathered}$	Q. 19	$\left(2 p+\frac{1}{5}\right)^{3}$	Q. 21	$\begin{gathered} a=5, \\ (x-1)(x+3)(3 x-1) \end{gathered}$	Q. 22	$\begin{aligned} & \text { Rectangle } \\ & (2,1) \end{aligned}$
Q. 23	$1074 m^{2}, 179$						

