Class: XI	Department: SCIENCE 2020 -21 SUBJECT: PHYSICS	Date of submission: 11.01 .2021
Worksheet No:10 WITH ANSWERS	Topic: THERMAL PROPERTIES OF MATTER	Note:
NAME OF THE STUDENT-	CLASS \& SECTION	A4 FILE FORMAT

Multiple choice questions:

1. The density of a substance at $0^{\circ} \mathrm{Cis} 10 \mathrm{~g} / \mathrm{cc}$ and at $100^{\circ} \mathrm{C}$ its density is $9.7 \mathrm{~g} / \mathrm{cc}$. The coefficient of linear expansion of the substance is
(a) $10^{-40} \mathrm{C}^{-1}$
(b) $10^{-2} \mathrm{C}^{-1}$
(c) $10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
use the formula of volumetric thermal expansion , $V=V_{o}(1+3 a \times \Delta T)$ [because, $Y=3 a$
we know, density = mass/Volume ,
because mass can't be change if temperature change.
so, formula of thermal expansion for density,
$d=d_{0}((1+3 a \times \Delta T)$
$9.7=10 /[1+3 a \times(100-0)]$
$9.7=10 /[1+300 a]$
$9.7+2910 a=10$
$2910 a=0.3=>a=0.00010309$
$a=1.0309 \times 10^{\wedge}-4 /^{\circ} \mathrm{C}$
(d) $10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2. A copper wire of length L increases in length by 0.2% on heating from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Then percentage change in area of a copper plate of dimensions $3 \mathrm{~L} x 2 \mathrm{~L}$ on heating from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is
(a) 0.15%
(6) 0.3%
(c) 0.4%
(d) 0.6%
```
solution : using formula, \Deltal=la\DeltaT
as it is given that, \DeltaI=0.2% of I=0.002l
so,0.0021 = 1a }\times(4\mp@subsup{0}{}{\circ}\textrm{C}-2\mp@subsup{0}{}{\circ}\textrm{C}
C2\times10-3=a\times20
aa=1\times10-4/ % C
now change in area is given by, }\triangleA=AB\triangle
we know, }\beta=2
so, }\triangleA=AZa\Delta
\Longrightarrow\triangleA/A = 2,GAT = 2 N 10-4/\circ}\textrm{C}\times2\mp@subsup{0}{}{\circ}\textrm{C
=4\times10-3
percentage change in area = \triangleA/A N 100
=4\times10
=0.4%
```

3. The ratio of densities of iron at $10^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ is (α of iron $=10 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$)
(a) 1.003
(6) 1.0003
(c) 1.006
(d) 1.0006

$$
\begin{aligned}
& \alpha \text {-coefficient of linear expansion }=10 \times 10^{-60} \mathrm{C}^{-1} \\
& V^{\prime}=V+\Delta V=V+r V \times \Delta T=V(1+r \Delta T) \\
& d_{\text {ensity }}=\frac{\text { mass }}{V_{\sigma \text { wan }}}=\frac{M}{V(1+r \Delta T)}=\frac{d_{1}}{(1+r \Delta T)} \\
& \frac{d_{10} \mathrm{~L}}{d_{30^{\circ}} \mathrm{C}}=\frac{\left(\frac{d_{1}}{1+3 \alpha(10-25)}\right)}{d_{1}}=\frac{1+3 \times 10 \times 10^{-6} \times 15}{1+3 \times(30-25)}=1.006
\end{aligned}
$$

4. pendulum clock shows correct time at certain temperature. At a higher temperature the clock
(a) loses time
(b) gains time
(c) neither gains nor loses time
(d) firstly gains and then loses

The time period pendulum is,
$\mathrm{T}=2 \pi \sqrt{(\mathrm{~L} / \mathrm{g})}$ (where, T is the period, $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
Since the length (L) of the pendulum changes with temperature so the period will also change.
For higher temperature the length will increase and the period will also extend which shows the time of the ticks. So the clock will lose the time.
5. Certain amount of heat is given to 100 g of copper to increase its temperature by $21^{\circ} \mathrm{C}$. If the same amount of heat is given to 50 g of water, then the rise in its temperature is
(specific heat capacity of copper $=400 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and that for water $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$)
(a) $4{ }^{\circ} \mathrm{C}$
(b) $5.25^{\circ} \mathrm{C}$
(c) $8^{\circ} \mathrm{C}$
(d) $10.5^{\circ} \mathrm{C}$

```
The amount of heat supplied is given by the
relation Q = ma|A
Here, m =100g = 0. 1 kg,c = 400J/ kg -k
    \DeltaT=21F5 for copper
Thus, Q =0.1 }\times400=21=840.
Hence, 840=0.05 }\times4200\times\Delta
C DT= 4
```

6. Specific heat of a substance at the melting point becomes
(a) low
(b) high
(c) remains unchanged (d) infinite

Amount of heat required to raise the tamp. of 1 kg of substance to $1^{\circ} \mathrm{C}$

$$
\begin{aligned}
& Q=m C \Delta T \\
& \frac{\theta}{0}=C \quad \Rightarrow C=\infty
\end{aligned}
$$

7. Person weighing 60 kg takes in 2000 kcal diet in a day. If this energy was to be used in heating the person without any losses, his rise in temperature would be nearly (Given sp. heat of human body is $0.83 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$)
(a) $30^{\circ} \mathrm{C}$
(b) $40^{\circ} \mathrm{C}$
(c) $35^{\circ} \mathrm{C}$
(d) $45^{\circ} \mathrm{C}$

$$
\begin{aligned}
& m=60 \mathrm{~kg}=60,000 \mathrm{~g}, \Delta Q=2000 \mathrm{kcal}=2000 \times 10^{3} \mathrm{Cal} \\
& S=0.83 \mathrm{cal} \mathrm{~g}^{-10} \mathrm{C}^{-1}
\end{aligned}
$$

$\Delta Q=m s \Delta T$

$\Delta T=\frac{\Delta Q}{m s}=\frac{2000 \times 10^{3}}{6 \times 10^{3} \times 0.83} \simeq 40^{\circ} \mathrm{C}$

Fill in the blanks,

1. Heat is a form of. which produces in us the \qquad
2. Amount of heat required to raise the temperature of 1 gram of water through $1^{\circ} \mathrm{C}$ is called
3. Amount of heat required to raise the temperature of unit mass of the substance through unit degree is called \qquad of the substance.
4. A boiling point of a substance \qquad with increase in pressure.
5. The change from solid state to vapour state without passing through the liquid state is called \qquad
6. The phenomenon of refreezing of ice on reducing the pressure from ice is called

ANSWERS OF MCQs; -1. (a),2. (d), 3. (d), 4. (a), 5. (a), 6. (d), 7. (b),
Answers; Fill in the blanks, .1. energy, sensation of warmth 2.1 cal, 3. Sp.ht.cap. 4. Increases, 5. Sublimation, 6. Relegation.

CONCEPTUAL TYPE QUESTIONS: -

1. Can water be boiled without heating?

Ans: - Yes. At low pressure. Below the room temperature, when the pressure is made low, the water starts boiling without supplying any heat.
2. Why water is preferred to any other liquid in the hot water bottles?

Ans: - Water is preferred to any other liquid in the hot water bottles because the specific heat of water is high. It does not cool fast.
3. The ice at $0^{\circ} \mathrm{C}$ is converted into steam at $100^{\circ} \mathrm{C}$. State the isothermal changes in the process.

Ans: - Isothermal changes are (i) conversion of ice at $0^{\circ} \mathrm{C}$ into water at $0^{\circ} \mathrm{C}$ (ii) conversion of water at $100^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$.
4. What is relegation?

Ans. It is a phenomenon of refreezing the water into ice (on the surface of ice formed due to increase in pressure) on removing the increased pressure.
5. What is sublimation?

Ans. On heating a substance, the change from solid state to vapour state without passing through the liquid state is called sublimation.
6. What is specific heat of a gas in an isothermal process?

Ans- Infinite, because $\Delta \mathrm{T}=0, \mathrm{c}=\mathrm{Q} / \mathrm{m} \Delta \mathrm{T}$.
7. What is the basic condition for Newton's law of cooling to be obeyed?

Ans. Newton's law of cooling will be obeyed if the temperature difference between body and surroundings is small, i.e., not more than $40^{\circ} \mathrm{C}$.

NUMERICAL TYPE QUESTIONS: -

1. A brass disc has a hole of diameter 2.5 cm at $27^{\circ} \mathrm{C}$. Find the change in the diameter of the hole of the disc when heated to $327^{\circ} \mathrm{C}$. Given coefficient of linear expansion of brass is $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$

Solution. Here, $D_{27}=2.5 \mathrm{~cm}$;
$\Delta T=327-27=300^{\circ} \mathrm{C}$
$\alpha=1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1} ; \quad D_{327}-D_{27}=$?
$D_{327}=D_{27}[1+\alpha \Delta T]=D_{27}+D_{27} \alpha \Delta T$
Change in diameter $=D_{327}-D_{27}=D_{27} \alpha \Delta T$

$$
\begin{aligned}
& =2.5 \times\left(1.9 \times 10^{-5}\right) \times 300 \\
& =0.014 \mathrm{~cm} .
\end{aligned}
$$

2. How much should the temperature of a brass rod be increased so as to increase its length by 1% ? Given α for brass is $0.00002^{\circ} \mathrm{C}^{-1}$

Solution. Here, $\Delta T=$?; $\frac{\Delta L}{L}=\frac{1}{100}$
As,

$$
\alpha=0.00002^{\circ} \mathrm{C}^{-1}
$$

$\therefore \quad \Delta T=\frac{\Delta L}{L \alpha}=\frac{1}{100 \times 0.00002}$

$$
=\frac{10^{5}}{2 \times 10^{2}}=500^{\circ} \mathbf{C}
$$

3. Railway lines are laid with gaps to allow for expansion. If the gap between steel rails 60 m long be 3.60 cm at $10^{\circ} \mathrm{C}$, then at what temperature will the lines just touch? Co-efficient of linear expansion of rail $=11 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$

$$
\begin{aligned}
& \text { Here, } l=60 \mathrm{~m} ; \Delta l=3.60 \mathrm{~cm}=3.6 \times 10^{-2} \mathrm{~m} ; \\
& \theta_{1}=10^{\circ} \mathrm{C}, \theta_{2}=? ; \alpha=11 \times 10^{-6} \mathrm{C}^{-1} \\
& \alpha=\frac{\Delta l}{l\left(\theta_{2}-\theta_{1}\right)} \text { or } \theta_{2}-\theta_{1}=\frac{\Delta l}{l \alpha} \\
& \text { or } \theta_{2}=\theta_{1}+\frac{\Delta l}{l \alpha}=10+\frac{3.60 \times 10^{-2}}{60 \times 11 \times 10^{-6}} \\
& =10+54.54=64.54^{\circ} \mathrm{C}
\end{aligned}
$$

4. A blacksmith fixes iron ring on the rim of the wooden wheel of a bullock cart. The diameter of the rim and the ring are 5.243 m and 5.231 m respectively at $27^{\circ} \mathrm{C}$. To what temperature should the ring be heated so as to fit the rim of the wheel? Coefficient of linear expansion of iron is $1.20 \times 10^{-5} \mathrm{~K}^{-1}$.

Solution. Here, $\quad L_{T_{1}}=5.231 \mathrm{~m}$;

$$
\begin{aligned}
& L_{T_{2}}=5 \cdot 243 \mathrm{~m} ; T_{1}=27^{\circ} \mathrm{C}, T_{2}=? \\
& \text { As, } \alpha=\frac{L_{T_{2}}-L_{T_{1}}}{\left.L_{T_{1}} T_{2}-T_{1}\right)} \therefore T_{2}-T_{1}=\frac{L_{T_{2}}-L_{T_{1}}}{L_{T_{1}} \times \alpha} \\
& \text { or } \begin{aligned}
T_{2} & =\frac{L_{T_{2}}-L_{T_{1}}}{L_{T_{1}} \times \alpha}+T_{1} \\
& =\frac{5 \cdot 243-5 \cdot 231}{5 \cdot 231 \times 1 \cdot 2 \times 10^{-5}}+27 \\
& =191 \cdot 1+27=218 \cdot 1 \approx 218^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
$$

5. The water of mass 75 g at $100^{\circ} \mathrm{C}$ is added to ice of mass 20 g at $-15^{\circ} \mathrm{C}$. What is the resulting temperature. (Latent heat of ice $=80 \mathrm{cal} / \mathrm{g}$ and specific heat of ice $=0.5 \mathrm{cal} \mathrm{g}^{-1} \mathrm{C}^{-1}$)

Solution. Let the resulting temperature be $T_{0}{ }^{\circ} \mathrm{C}$
Sp. heat of water, $s_{1}=1 \mathrm{cal} / \mathrm{g} /{ }^{\circ} \mathrm{C}$
Heat lost by water $=m_{1} s_{1} \Delta T_{1}$

$$
=75 \times 1 \times\left(100-T_{0}\right) \mathrm{cal} .
$$

Heat gained by ice
(i) from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=m_{2} s_{2} \Delta T_{2}$

$$
=20 \times 0.5 \times(0+15)=150 \mathrm{cal}
$$

(ii) in converting into water at $0^{\circ} \mathrm{C}=m_{2} L$

$$
=20 \times 80=1600 \mathrm{cal}
$$

(iii) in raising the temperature of water formed from $0^{\circ} \mathrm{C}$ to $T_{0}{ }^{\circ} \mathrm{C}$.

$$
=m_{2} s_{1}\left(T_{0}-0\right)=20 \times 1 \times T_{0}=20 T_{0} \text { cal }
$$

According to principle of calorimetry,
heat lost = heat gained

$$
75\left(100-T_{0}\right)=150+1600+20 T_{0}
$$

or $7500-75 T_{0}=1750+20 T_{0}$
or $95 T_{0}=5750$ or $T_{0}=\frac{5750}{95}=\mathbf{6 0 \cdot 5}{ }^{\circ} \mathrm{C}$
6. When 0.15 kg of ice at $0^{\circ} \mathrm{C}$ is mixed with 0.30 kg of water at $50^{\circ} \mathrm{Cin}$ a container, the resulting temperature is $6.7^{\circ} \mathrm{C}$. Calculate the heat of fusion of ice. (water $4186 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$)

Solution. Heat lost by water

$$
\begin{aligned}
=m_{w} s_{w}\left(T_{1}-T_{2}\right) & =0.30 \times 4186 \times(50-6.7) \\
& =54376.14 \mathrm{~J}
\end{aligned}
$$

Heat taken by ice $=m_{i} L+m_{i} s_{w}\left(T_{2}-T_{0}\right)$

$$
=0.15 \times L+0.15 \times 4186 \times(6.7-0)
$$

$$
=0.15 L+4206.93 \mathrm{~J}
$$

Heat lost = heat gained

$$
\therefore \quad 54376 \cdot 14=0.15 L+4206.93
$$

$$
\text { or } \quad L=3.34 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}
$$

7. How many grams of ice at $-14^{\circ} \mathrm{C}$ are needed to cool 200 gram of water form $25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$? Take specific heat of ice $=00.5 \mathrm{cal} \mathrm{g}^{-1} \mathrm{C}^{-1}$ and Latent heat of ice $=80 \mathrm{cal} \mathrm{g}^{-1}$.

Heat gained by ice at $-14^{\circ} \mathrm{C}$ to change into
Solution. Here, $m_{\text {ice }}=? m_{w}=200 \mathrm{~g}$;

$$
s_{\text {ice }}=0.5 \mathrm{cal} \mathrm{~g}^{-10} \mathrm{C}^{-1}, L_{\text {ice }}=80 \mathrm{cal} \mathrm{~g}^{-1}
$$

Heat lost by water in cooling from $25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$
is

$$
\begin{aligned}
Q_{1}=m_{w} \times s_{w} \times \Delta T_{1} & =200 \times 1 \times(25-10) \\
& =3000 \mathrm{cal}
\end{aligned}
$$

$$
\begin{aligned}
Q_{2}= & m_{\text {ice }} s_{\text {ice }} \Delta T_{2}+m_{\text {ice }} L_{\text {ice }}+m_{\text {ice }} \times s_{w} \times \Delta T_{3} \\
= & m \times 0.5 \times[0-(-14)]+m \times 80 \\
& \quad+m \times 1 \times(10-0) \\
= & 97 \mathrm{~m} \text { cal }
\end{aligned}
$$

or $3000=97 \mathrm{~m}$ or $m=\frac{3000}{97}=\mathbf{3 1} \mathrm{g}$
8. How much meters can a 50 kg man climbs by using the energy from a slice of a bread which produces 420 kJ heat? Assuming that the human body efficiency working is 30%. Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

Sol: - Let h be the height climbed by man. Increase in PE of man $=\mathrm{mgh}=50 \mathrm{x} 10 \mathrm{xh} \mathrm{J}$
Heat produced; $\mathrm{H}=420 \mathrm{~kJ}=420 \times 1000 \mathrm{~J}=4.2 \times 10^{5} \mathrm{~J}$
efficiency of man $=30 \%$,
So heat energy utilized $=\frac{30}{100} \times 4.2 \times 10^{5}=12.6 \times 10^{4} \mathrm{~J}$
Now, increase in PE $=$ heat energy utilized
$50 \times 10 \times \mathrm{h}=12.6 \times 10^{4}$
$\mathrm{h}=\frac{126000}{50 \times 10}=252 \mathrm{~m}$.

MR. RANDHIR KUMAR GUPTA
CHECKED BY : HOD - SCIENCE

