

| (i) | $P\left(A / E_{1}\right)$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A |  | 1 | B | $\frac{1}{2}$ | C | $\frac{3}{4}$ | D | $\frac{1}{4}$ |
| (ii). | $P\left(A / E_{2}\right)$ |  |  |  |  |  |  |  |  |
|  | A |  |  | B | $\frac{1}{2}$ | C | $\frac{3}{4}$ | D | $\frac{1}{4}$ |
| (iii) | $P\left(E_{1} / A\right)$ |  |  |  |  |  |  |  |  |
|  | A |  |  | B | $\frac{12}{13}$ | C | $\frac{11}{13}$ | D | $\frac{1}{4}$ |
| (iv) | $P\left(E_{2} / A\right)$ |  |  |  |  |  |  |  |  |
|  | A |  | 1 | B | $\frac{12}{13}$ | C | $\frac{1}{13}$ | D | $\frac{1}{4}$ |
| (v) | $P\left(E_{1} \cap A\right)=$ |  |  |  |  |  |  |  |  |
|  | A |  | 1 | B | $\frac{1}{3}$ | C | $\frac{3}{4}$ | D | $\frac{1}{16}$ |
| Q3. | Evaluate $P(A \cup B)$ if $2 P(A)=P(B)=\frac{5}{13}$ and $P(A / B)=\frac{2}{5}$ |  |  |  |  |  |  |  |  |
| Q.4. | The probability of an event $A$ occurring is 0.4 and of $B$ is 0.5 . If $A$ and $B$ are mutually exclusive events, then find the probability of neither $A$ nor $B$. |  |  |  |  |  |  |  |  |
| Q5. | A black and a red die are rolled. Find the conditional probability of obtaining a sum greater than 9 , given that the black die resulted in a 5. |  |  |  |  |  |  |  |  |
| Q6. | A bag contains 4 red, 3 black and 2 white balls. If three balls are drawn one by one without replacement, then what is the probability that all three balls are black? |  |  |  |  |  |  |  |  |
| Q7. | A coin is tossed n times. What is the number of all possible events? |  |  |  |  |  |  |  |  |
| Q8. | If E and F are events such that $P(E)=\frac{1}{4}, P(F)=\frac{1}{2}$ and $P(E$ and $F)=\frac{1}{5^{\prime}}$, then find $P($ not $E$ and not $F)$. |  |  |  |  |  |  |  |  |
| Q9. | A coin is tossed 4 times. Find the probability that at least one head turns up. |  |  |  |  |  |  |  |  |


| Q10. | A die is thrown. If $A$ is the event that the number obtained is greater than 3 and $B$ is the event that <br> the number obtained is less than 5 , then find $P(A U B)$ |
| :--- | :--- |
| Q11. | In Class XI of a school $40 \%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study <br> both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will <br> be studying Mathematics or Biology. |
| Q12. | Two students $A$ and $B$ appeared in an examination. The probability that A will qualify the examination is 0.05 <br> and that $B$ will qualify the examination is 0.10 . The probability that both will qualify the examination is 0.02. <br> Find the probability that both $A$ and $B$ will not qualify the examination |

## \&\&\&\&\&\&\&

| $\begin{aligned} & \text { N } \\ & \sum_{\substack{\sim \\ \sim}}^{\sim} \end{aligned}$ | 1. | (i) C <br> (ii) D <br> (iii) B <br> (iv) $A$ <br> (v) D | 2. | (i). A <br> (ii). D <br> (iii). B <br> (iv). C <br> (v). C | 3. | $\frac{11}{26}$ | 4. | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5. | $\frac{1}{3}$ | 6. | $\frac{1}{84}$ | 7. | $2^{2^{n}}$ | 8. | $\frac{3}{8}$ |
|  | 9. | $\frac{15}{16}$ | Q10. | 1 | 11 | 0.6 | 12 | 0.87 |

