

Class: XI	Department: SCIENCE 2020 -21 SUBJECT: CHEMISTRY		Date of submission: 20.11.2020
Worksheet No: 08 WITH ANSWERS	Chapter: REDOX REACTIONS		Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

MULTIPLE CHOICE QUESTIONS (1 M)

- 1. Find the oxidation state of I in $H_4IO_6^$
 - a. +7
 - b. +5
 - c. +1
 - d. -1
- 2. Which of the following arrangements represent increasing oxidation number of the central atom? a. CrO_2^- , ClO_3^- , CrO_4^{2-} , $MnO_4^$
 - b. ClO₃⁻, CrO₄²⁻, MnO₄⁻, CrO₂⁻
 - c. CrO₂⁻, ClO₃⁻, MnO₄⁻, CrO₄²⁻
 - d. CrO_4^2 , MnO_4 , CrO_2 , ClO_3

3. The reaction $S_8 + 12OH^- \longrightarrow 4S^{2-} + 2S_2O_3^{2-} + 6H_2O$ is

- a. Combination reaction
- b. Decomposition reaction
- c. Non-metal displacement
- d. Disproportionation reaction
- 4. 'I' cannot act as reducing agent in following state
 - a. –1
 - b. +1
 - c. +7
 - d. +5

5. Oxidation state of Oxygen in O₂F₂ is _____

- a. +2
- b. +1
- c. -1
- d. -2

6. Match the following.

Column I	Column II		
i.	p. Disproportionation		
$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$			
ii.	q. Non-metal displacement		
$Cr_2O_3 + 2A1 \longrightarrow Al_2O_3 + 2Cr$			
iii.	r. Metal displacement		
$Fe + 2HCl \longrightarrow FeCl_2 + H_2$			
iv.	s. Combination reaction		
$\mathrm{P_4} + \mathrm{3OH^-} + \mathrm{3H_2O} \rightarrow \mathrm{PH_3} + \mathrm{3H_2PO_2^-}$			
a. $i - s$, $ii - p$, $iii - q$, $iv - r$			
b. i – r, ii – p , iii – q, iv- s			
c. $i - s$, $ii - r$, $iii - q$, $iv - p$			

7. Write the formula of Iron(II)sulphate

d. i - p, ii - q, iii - s, iv - r

- a. FeSO₄
 b. Fe₂(SO₄)₃
 c. Fe₂SO₄
- d. $Fe(SO_4)_2$
- 8. Assertion: Oxidation occurs when decrease in electron density is observed. Reason: Oxidation is gain of electro-positive element.
 - a. Both Assertion and Reason are true and Reason is the correct explanation of the Assertion.
 - b. Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.
 - c. Assertion is true but Reason is false.
 - d. Assertion is false but Reason is true.
- Assertion: Oxygen has zero oxidation state in O₂.
 Reason: Element in their elemental form have zero oxidation state
 - a. Both Assertion and Reason are true and Reason is the correct explanation of the Assertion.
 - b. Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.
 - c. Assertion is true but Reason is false.
 - d. Assertion is false but Reason is true.

- 10. Assertion: Reaction $FeSO_4(aq) + Cu(s) \longrightarrow CuSO_4(aq) + Fe$ does not occur. Reason: Fe is more reactive than Cu.
 - a. Both Assertion and Reason are true and Reason is the correct explanation of the Assertion.
 - b. Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.
 - c. Assertion is true but Reason is false.
 - d. Assertion is false but Reason is true.

Short answer type - 2 Marks

- 11. An iron nail fell into 1M solution of AgNO₃ placed in a glass vessel. What observations will be made?
- 12. Write the formula of the following compounds.
 - i. Chromium(III)oxide ii. Thallium(I) sulphate

Short answer type - 3 Marks

- 13. Give one example each of the following redox reactions
 - a. Combination reaction
 - b. Decomposition reaction
 - c. Metal displacement reaction
- 14. a. Justify that the following reaction $2Na(s) + H_2(g) \rightarrow 2NaH(s)$ is a redox change.
 - b. Balance the reaction in acid medium. $Cr_2O_7{}^{2\text{-}} + \ Fe{}^{2\text{+}} \rightarrow \ Cr{}^{3\text{+}} + \ Fe{}^{3\text{+}}$

Long answer type (5M)

15. a. Balance the following reactions in basic medium.

 $MnO_4^- + I^- \rightarrow MnO_2 + IO_3^-$

- b. Consider the elements: Cs, Ne, I and F
 - i. Identify the element that exhibits only negative oxidation state.
 - ii. Identify the element that exhibits only positive oxidation state
 - iii. Identify the element that exhibits both positive and negative oxidation states.
 - iv. Identify the element which exhibits neither the negative nor does the positive oxidation state

<mark>ANSWER KEY</mark>

Hints

- 1. a
- 2. a
- 3. d
- 4. c
- 5. b

- 6. с 7. а
- 8. c
- 9. a
- 10. a

11. As iron is more reactive than silver, iron will displace silver from the solution.
The reaction that will take place is - Fe + 2AgNO₃ → Fe(NO₃)₂ + 2Ag
Upon dipping an iron nail into silver nitrate, a coating of silver will deposit on the iron surface.
The solution, which is initially colourless, begins to get a light green colour.

12.i. Cr₂O₃ ii. Tl₂SO₄

13. a. Any suitable eg

$$C(s) + O_2(g) \xrightarrow{A} CO_2(g)$$

- b. Any suitable eg 2KClO_3 (s) $\stackrel{\blacktriangle}{\longrightarrow}$ 2KCl (s) $+ 3\text{O}_2$ (g)
- c. Any suitable eg Cr_2O_3 (s) + 2 Al (s) \xrightarrow{A} Al₂O₃ (s) + 2Cr(s)

14. a. 2 Na (s)
$$\rightarrow$$
 2 Na⁺ (g) + 2e⁻
H₂ (g) + 2e⁻ \rightarrow 2 H⁻ (g)
Sodium is oxidised and hydrogen is reduced,

b. Oxidation half

Reduction half

 $\begin{array}{rrr} (Fe^{2+} \rightarrow ~Fe^{3+} + e^{-} ~~) \times 6 \\ Cr_2O_7{}^{2-} ~~+ 14~H^+ + 6e^{-} \rightarrow ~2Cr^{3+} ~~+ 7H_2O \end{array}$

$$6Fe^{2+} + Cr_2O_7^{2-} + 14 H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

15. a. $MnO_4^- + I^- \rightarrow MnO_2 + IO_3^-$

Oxidation half	Reduction half
$I^{-}(aq) \rightarrow IO_{3}^{-}(aq)$	MnO_4^- (aq) $\rightarrow MnO_2$ (s)
$I^{-}(aq) + 3H_2O(l) \rightarrow IO_3^{-}(aq)$	MnO_4 (aq) $\rightarrow MnO_2$ (s) + 2H ₂ O
$I^{-}(aq) + 3H_2O(1) \rightarrow IO_3^{-}(aq) + 6H^+(aq)$	$MnO_4^-(aq) + 4H^+(aq) \rightarrow MnO_2(s) + 2H_2O$
$I^{-}(aq)+3H_{2}O(1)+6 OH^{-}(aq) \rightarrow IO_{3}^{-}(aq)+6H^{+}(aq)$ + $6OH^{-}(aq)$	$MnO_{4}^{-}(aq) + 4H^{+}(aq) + 4OH^{-}(aq) \rightarrow MnO_{2}(s) + 2H_{2}O(l) + 4OH^{-}(aq)$
$I^{-}(aq) + 3H_2O(l) + 6 OH^{-}(aq) \rightarrow IO_3^{-}(aq) + 6 H_2O(l)$	$MnO_{4}(aq) + 4 H_{2}O(1) \rightarrow MnO_{2}(s) + 2H_{2}O(1) + 4OH(aq)$
$I^{-}(aq) + 6 OH^{-}(aq) \rightarrow IO_{3}^{-}(aq) + 3 H_{2}O(l) + 6e$	$MnO_{4}^{-}(aq) + 2H_{2}O(l) + 3e^{-} \rightarrow MnO_{2}(s) + 4OH^{-}(aq)$

 $I^{-} + 6 OH^{-} \rightarrow IO_{3}^{-} + 3 H_{2}O + 6e^{-}$ $(MnO_{4}^{-} + 2H_{2}O + 3e^{-} \rightarrow MnO_{2} + 4OH^{-}) \times 2$

 $I^{-}(aq) + 6 OH^{-}(aq) + 2MnO_{4}^{-}(aq) + 4H_{2}O \rightarrow IO_{3}^{-}(aq) + 3 H_{2}O + 2MnO_{2} + 8OH^{-}(aq)$ $I^{-}(aq) + 2MnO_{4}^{-}(aq) + H_{2}O(1) \rightarrow IO_{3}^{-}(aq) + 2MnO_{2}(s) + 2OH^{-}(aq)$

b. i. F

ii. Cs

iii. I

iv. Ne

Prepared by : Ms. Jasmin Joseph	Checked by: HOD - SCIENCE
---------------------------------	---------------------------