

INDIAN SCHOOL AL WADI AL KABIR

Class: XII	Department: SCIENCE 2020 -21 Subject: CHEMISTRY Chapter: THE p BLOCK ELEMENTS		Date of submission: 28.10.2020
Worksheet No: 10			Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

1. Among the following which is the strongest oxidizing agent?

a. Br₂

b. Cl₂

 $c. F_2$

 $d. I_2$

2. The shape of XeF₄ is

a. tetrahedral

b. square planar

c. pyramidal

d. linear

3. The boiling points of hydrides of group 16 are in the order

- a. $H_2O > H_2Te > H_2S > H_2Se$
- b. $H_2O > H_2S > H_2Se > H_2Te$
- c. $H_2O > H_2Te > H_2Se > H_2S$
- d. None of these
- 4. The set with correct order of acidity is
 - a. HClO < HClO₂ < HClO₃ < HClO₄
 - b. HClO₄ < HClO₃ < HClO₂ < HClO
 - c. HClO < HClO₄ < HClO₃ < HClO₂
 - d. $HClO_4 < HClO_2 < HClO_3 < HClO$
- 5. The formation of O_2^+ [PtF₆]⁻ is the basis for the formation of first xenon compound. This is because
 - a. O₂ and Xe have different sizes.
 - b. both O_2 and Xe are gases.
 - c. O₂ and Xe have comparable electronegativities.
 - d. O₂ and Xe have comparable ionisation enthalpies.
- 6. Which of the following is the correct statement?
 - a. F₂ has higher dissociation energy than Cl₂.
 - b. F has higher electron affinity than Cl.
 - c. HF is stronger acid than HCl.
 - d. Boiling point increases down the group in halogens.

- 7. Among the following compounds, which on heating do not produce N_2 ?
 - a. (NH₄)₂Cr₂O₇
 - b. $NH_4Cl + NaNO_2$
 - $c. NH_4Cl + CaO$
 - d. $Ba(N_3)_2$
- 8. Bleaching action of SO₂ is due to its
 - a. acidic property
 - b. basic property
 - c. reducing property
 - d. oxidising property
- 9. Match the interhalogen compounds of column I with the geometry in Column II .

Column I

i. XX'₃
ii. XX'₅
iii. XX'₇
a. i - q, ii - r, iii - p
b. i - q, ii - p, iii - r
c. i - r, ii - p, iii - q
d. i - p, ii - q, iii - r

Column II

- p. Pentagonal bipyramidal
- q. Bent T shape
- r. Square pyramidal

10. Assertion: Finely divided iron does not form ferric chloride with HCl.

Reason: HCl produces hydrogen gas with iron.

- a. If both Assertion and Reason are true and Reason is the correct explanation of the Assertion.
- b. If both Assertion and Reason are true and Reason is not a correct explanation of the Assertion.
- c. If Assertion is true but Reason is false.
- d. If Assertion is false and Reason is true.
- 11. Complete the following equations.

i.
$$XeF_2 + H_2O \rightarrow$$

ii.
$$I_2 + HNO_3$$
 (conc) \rightarrow

iii.
$$XeF_4 + H_2O \rightarrow$$

iv. NaOH (hot and conc) +
$$Cl_2 \rightarrow$$

v.
$$XeF_4 + O_2F_2 \rightarrow$$

- 12. Give reasons for the following.
 - a. Sulphur in vapour state exhibits paramagnetic behaviour.
 - b. In the structure of HNO₃, the N-O bond (121 pm) is shorter than the N-OH bond (140 pm).
 - c. ICl is more reactive than I₂.
 - d. The electron gain enthalpy with negative sign for Fluorine is less than that of Chlorine, still Fluorine is a stronger oxidizing than Chlorine.

- e. Helium is used in driving apparatus as a diluent for oxygen.
- f. Oxygen has less electron gain enthalpy with negative sign than Sulphur.
- g. H₂Te is the strongest reducing agent amongst all the hydrides of Group 16 elements.
- h. N₂ is less reactive at room temperature.

13. What happens when

- a. Chlorine gas is passed through a cold dilute solution of NaOH?
- b. Sulphur dioxide gas is passed through an aqueous solution of Fe(III) salt?
- 14. Answer the following.
 - a. Why does fluorine not play the role of a central atom in interhalogen compounds?
 - b. Why do noble gases have very low boiling points?
- 15. Predict the shape and the asked angle (90° or more or less) in each of the following cases:
 - i. ClF₃ and the angle F-Cl-F
 - ii. XeF₂ and the angle F-Xe-F
- 16. Account for the following statements.
 - i. Fluoride ion has higher hydration enthalpy than chloride ion.
 - ii. Nitrogen do not form pentahalide.
 - iii. Thermal stability decreases from H₂O to H₂Te.
- 17. Give the formula and describe the structure of a noble gas species which is isostructural with
 - i. ICl₄
- ii. IBr₂-
- iii. BrO₃-
- 18. Arrange the following in the order of property indicated for each
 - i. HF, HCl, HBr, HI (increasing acidic strength)
 - ii. NH₃, PH₃, AsH₃, SbH₃, BiH₃ (increasing base strength)
- 19. Arrange the following in the decreasing order of their reducing character.

20. Give reasons

When Cl₂ reacts with excess of F₂, ClF₃ is formed and not FCl₃

- 21. Among the hydrides of group 15 elements, which have the
 - a. lowest boiling point?
 - b. maximum basic character?
 - c. highest bond angle?
 - d. maximum reducing character?

Hint

```
1. c
```

11. i.

$$2XeF_{2}(s) + 2H_{2}O(l) \rightarrow 2Xe(g) + 4 HF(aq) + O_{2}(g)$$
ii.
 $I_{2} + 10HNO_{3} \rightarrow 2HIO_{3} + 10NO_{2} + 4H_{2}O$
iii
 $6XeF_{4} + 12 H_{2}O \rightarrow 4Xe + 2XeO_{3} + 24 HF + 3 O_{2}$
iv.
 $6 NaOH + 3Cl_{2} \rightarrow 5NaCl + NaClO_{3} + 3H_{2}O$
(hot and conc.)
v.
 $XeF_{4} + O_{2}F_{2} \rightarrow XeF_{6} + O_{2}$

- 12. a. Due to unpaired electrons in the antibonding π^* orbital
 - b. N-O bond has partial double bond character due to resonance. N-OH bond is a single bond.
 - c. Due to dissimilar atoms with different electronegativities.
 - d. Low enthalpy of dissociation of F-F bond and high hydration enthalpy of F.
 - e. Less reactive, noble gas. Very less solubility in blood.
 - f. The electron is added to larger n= 3 level in S and therefore less electron electron repulsion.
 - g. Weak overlapping between large orbitals of Te and small orbitals of H
 - h. Triple bonded, very stable

2NaOH + Cl₂
$$\rightarrow$$
 NaCl + NaOCl + H₂O
(cold and dilute)
b.
$$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$$

- 14 a. Small size and absence of d orbitals.
 - b. Very weak van der Waals forces.
- 15. i. Less than 90°, Bent T structure
 - ii. More than 90°, Linear structure

- 16. i. Small size, high electronegativity of F.
 - ii. Absence of d orbitals
 - iii. Bond dissociation enthalpy decreases down the group.
- 17. i. XeF₄, Square planar, Draw structure
 - ii. XeF₂, Linear, draw structure
 - iii. XeO3, Trigonal pyramidal
- 18. i. HF < HCl < HBr < HI
 - ii. $BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$
- 19. HI > HBr > HCl > HF
- 20. Fluorine does not possess d orbitals, so it cannot expand its octet to bond with three chlorine atoms and form FCl₃. Chlorine has empty d orbitals and thus, it can expand its octet to bond with three fluorine atoms and form ClF₃.
- 21. a. PH₃
 - b. NH₃
 - c. NH₃
 - d. BiH₃

PREPARED BY: MS. JASMIN JOSEPH CHECKED BY: HOD - SCIENCE