INDIAN SCHOOL AL WADI AL KABIR
 Department of Mathematics, 2018-2019

Class XI

APPLIED MATHEMATICS (241)
05.10 .2020

WORKSHEET- Types of relations
Q.1. For real numbers x and y define $x R y$ if and only if $x-y+\sqrt{2}$ is an irrational number. Then the relation R is

\mathbf{A}	reflexive	B	symmetric	C	transitive	D	none of these

Q.2. The relation R in \boldsymbol{R} defined by $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$. Then R is

A \begin{tabular}{l}
Reflexive but not

symmetric

\quad B

Symmetric but not

symmetric

\quad C

reflexive but not

transitive

$~$ D

None of these

\hline
\end{tabular}

Q.3. If R be the relation in the set N given by $\mathrm{R}=\{(a, b): a=b-2, b>6\}$ then
A
$(2,4) \in R$
B
$(3,8) \in R$
C
$(6,8) \epsilon R$
$(8,7) \epsilon R$
Q.4. The number of all relations from set $A=\{1,2,3\}$ to itself is

A	3	B	9	C	81	D	512

Q.5. Let R be a relation on N defined by $x+2 y=8$. Domain of R is

A	$\{2,4,8\}$	B	$\{2,4,6\}$	C	$\{2,4,6,8\}$	D	$\{2,4,8,10\}$

Q.6. If R be the relation on set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ then R is

A only reflexive \quad B \begin{tabular}{c|l|l|l|l|l}
an equivalence

relation

\quad C

only symmetric
\end{tabular} D only transitive

Q.7. If Relation R in the set Z of all integers defined as $R=\{(x, y): x-y$ is an integer $\}$ then R is

A only a symmetric \quad B relation

Symmetric and transitive

C Reflexive and transitive
an equivalence relation.

Q.8.	If $\mathrm{R}==\{(a, b): a=b\}$, then R is							
	A	only symmetric	B	Reflexive and symmetric	C	Symmetric and transitive	D	an equivalence relation
Q.9.	If $\mathrm{R}==\{(a, b): a \leq b, a, b$ are real numbers $\}$, then R is							
	A	reflexive and symmetric	B	reflexive and transitive	C	Symmetric and transitive	D	none of these
Q. 10	Let T be the set of all triangles in a plane with R a relation in T given by $\mathrm{R}=\{(T 1, T 2): T 1$ is isimiar to $T 2\}$. Show that R is an equivalence relation.							
Q11.	Let L be the set of all lines in a plane and R be the relation in L defined as $\mathrm{R}=\{(L 1, L 2): L 1 \perp L 2\}$. Show that R is symmetric but neither reflexive nor transitive.							
Q12	Determine whether the relation R defined on the set of \mathbf{R} of all real numbers as $\mathrm{R}=\{(a, b): a, b \in \boldsymbol{R}$ and $a-b+\sqrt{3}$ is the set of irrational numbers $\}$ is reflexive or symmetric or transitive. Why?							
Q13	Show that the relation R defined on set $A=\{0,1,2,3, \ldots .12\}$ $\mathrm{R}=\{(a, b):\|a-b\|$ is diivisible by $4 ; a, b \in A\}$ is an equivalence relation							

ANSWERS									
1.	A	2.	D	3.	C	4.	D	5.	
6.	C	7.	C	8.	D	9.	C	11.	Reflexive only

