	INDIAN SCHOOL AL WADI AL KABIR	
CLASS: XII	DEPARTMENT: SCIENCE 2020 -2021	DATE:
	SUBJECT : CHEMISTRY	17.09.2020
HANDOUT	TOPIC: CHEMISTRY PRACTICAL :	NOTE: A4 FILE
	EXPT 5 :	FORMAT
	IDENTIFY THE FUNCTIONAL GROUPS	
	EXPT 6:	
	ANALYSIS OF PROTEIN AND CARBOHYDRATES	
	EXPT 7:	
	PAPER CHROMATOGRAPHY	
NAME OF	CLASS & SEC:	ROLL NO:
I HE		
STUDENT:		

EXPT 5: IDENTIFY THE FUNCTIONAL GROUPS

Aim: To determine the functional group present in the given organic compound.

Experiment	Observation	Inference
I TEST FOR PHENOLS(ArOH)		
1 ml of the given sample is treated with neutral	Violet colouration	Presence of
FeCl₃		phenolic group.
Liebermann's test	A deep blue green colour	Presence of the
To a small amount of the substance add 1 ml	which turns red on the	phenolic group
conc. H_2SO_4 cool and add $NaNO_2$ and dilute with	dilution.	
water		
II TEST FOR ALDEHYDES(-CHO group)		-
Mix 1 ml of the given sample with 2ml of	A reddish brown	Presence of
Fehling's solution (A+B) and heat on a water	precipitate is formed	aldehyde group
bath.		
Mix 1ml of the given sample with 1ml of Tollen's	A silver mirror is formed	Presence of –CHO
reagent and heat on a water bath .	on the inner walls of the	group
	test tube.	
III TEST FOR KETONES $>$ C= O group		
Add NaHSO₃ to the compound	A white precipitate is	Presence of
	formed	carbonyl group
To a small amount of the substance a small	A yellow precipitate is	Presence of methyl
amount of I ₂ and NaOH is added slowly.	formed	ketone.
IV TEST FOR CARBOXYLIC ACID(-COOH group)		
Add a little of a saturated solution of NaHCO $_3$	Brisk effervescence of a	Presence of
	colourless odourless gas	carboxylic acid
	which turns limewater	group
	milky	

Mix 1ml of the given sample with 1ml of ethanol and 1-2 drops of concentrated sulphuric acid.	A pleasant fruity smell of ester is evolved.	Presence of carboxylic acid is
Heat the mixture on a boiling water bath for 5		confirmed.
minutes. Remove the test tube from the water		
bath, pour the contents into beaker containing		
about 25ml water and note the smell.		
V TEST FOR AMINO (NH ₂) group		
Shake 2-3 ml of the given organic compound with	The compound dissolves	Presence of –NH ₂
dil. HCl		group
Take 1 ml of each of the organic compound, conc.	A red orange coloured dye	Presence of –NH ₂
HCl, NaNO ₂ solution and β -napthol solution in	is obtained	group
four different test tubes. Cool them below 5 °C in		
an ice bath. Mix them one by one (stir with glass		
rod) in the order given.		

Result: The presence of functional groups has been identified.

EXPT 6: ANALYSIS OF PROTEIN AND CARBOHYDRATES

Aim: To analyse the presence of protein and carbohydrates in the given samples.

EXPERIMENT	OBSERVATION	INFERENCE
PROTEINS		
Treat the given sample solution with few drops of Ninhydrin and heat	Violet colouration	Presence of protein
Acidify a dilute solution of sample with acetic acid and shake.	Froth is formed	Presence of protein
Treat a dilute solution of sample with few drops of conc. HNO ₃ followed by Millon's reagent.	White precipitate turns red on heating	Presence of protein
CARBOHYDRATES		
Mix 1 ml of the given sample with 2ml of Fehling's solution(1 ml each of A and B) and heat on water bath	A reddish brown precipitate is formed.	Presence of carbohydrate.
Mix 1 ml of the given sample with 1 ml of Tollen's reagent and heat on water bath	A silver mirror is formed on the inner walls of the test tube.	Presence of carbohydrate is confirmed

Result : The functional groups present in the given samples are analysed.

<u>Preparation of Tollen's Reagent</u>: Wash a test tube with little of NaOH solution and take about 1ml of Silver nitrate(AgNO₃) solution.A black precipitate formed just dissolves in minimum quantity of NH₄OH solution (Add dropwise carefully).

EXPT 7. PAPER CHROMATOGRAPHY

<u>Aim</u>: To separate coloured compounds from mixture of ink by ascending paper chromatography and compare the R_f of the compounds present.

<u>Requirements</u>: Chromatography paper, glass jar, capillary tube, ruler, pencil, mixture of inks, distilled water, etc.

<u>Theory</u>: The coloured components present in the ink mixture can be separated placing 1-2 drops of mixture on one end of the chromatography paper and eluting it using distilled water as the mobile phase.

The R_f value is calculated as follows:

R_f = <u>Distance traveled by the coloured component</u>

Distance traveled by the elute (distilled water)

Procedure:

- 1. One end of the chromatography paper is cut like a wedge.
- 2. Draw a reference line 1 inch away from the tip of the wedge using a pencil and ruler.
- 3. Using capillary tube place 1-2 drops of the ink mixture at the end of the reference line drawn. This process is called spotting.
- 4. The paper is then fixed over a gas jar in which distilled water is taken in such a way that the tip of the chromatography touches the water.
- 5. After about 20-30 minutes, the chromatography paper is removed. Pencil mark is made to note the distance travelled by the elute (Water).
- 6. Dry the chromatography paper and calculate the **R**_f values.

Precautions:

- 1. A fine capillary tube should be used so that the diameter of the spot is small.
- 2. The glass jar should not be disturbed.
- 3. The chromatography paper should not touch the sides of the gas jar.
- 4. The spot should lie above the level of the elute in the gas jar

Result:

- 1. The **R**_f value of the 1st component=
- 2. The **R**_f value of the 2nd component=

|--|