

INDIAN SCHOOL AL WADI AL KABIR

Class: XI	-	nt: SCIENCE :CHEMISTRY	Date of submission: 10.10.2020	
Worksheet No: 06 with answers	-	CHEMICAL BONDING AND LAR STRUCTURE	Note: A4 FILE FORMAT	
NAME OF THE	STUDENT	CLASS & SEC:	ROLL NO.	

Questions 1 – 4 are paragraph-based questions.

The electronic configurations of three elements A, B and C are given below.

A $1s^22s^22p^6$ B $1s^22s^22p^63s^23p^3$ C $1s^22s^22p^63s^23p^5$

1. Stable form of A may be represented by the formula

a. A

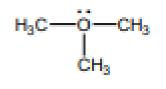
b. A₂

c. A₃

d. A₄

2. Stable form of C may be represented by the formula

- a, C
- b. C₂
- c. C₃
- d. C₄


3. The molecular formula of the compound formed from B and C will be

- a. BC
- b. B_2C
- $c. \ BC_2$
- d. BC₃
- 4. The bond between B and C will be
 - a. ionic
 - b. covalent
 - c. hydrogen
 - d. coordinate

5. sp^3d^2 hybridization is present in SF₆, find its geometry

- a. octahedral geometry
- b. square planar geometry
- c. tetragonal geometry
- d. tetrahedral geometry

- 6. Find the molecule with the maximum dipole moment
 - a. CH₄
 - b. NH₃
 - c. CO₂
 - d. NF₃
- 7. Find the pair with sp^2 hybridisation of the central molecule
 - a. NH₃ and NO₂⁻
 - b. BF_3 and CH_4
 - c. $BF_3 \mbox{ and } NO_2^-$
 - d. NH2⁻ and H2O
- 8. What is the formal charge on oxygen in the following structure?

- a. +1 b. -2 c. -1 d. 0
- 9. The correct decreasing order of boiling points of the following compounds is
 - a. $HF > H_2O > NH_3$ b. $H_2O > HF > NH_3$ c. $NH_3 > HF > H_2O$ d. $NH_3 > H_2O > HF$

Assertion Reason type

10. Assertion (A): Though the central atom of both NH₃ and H₂O molecules are sp³ hybridised, yet H–N–H bond angle is greater than that of H–O–H.

Reason (R): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.

- a. A and R both are correct, and R is the correct explanation of A.
- b. A and R both are correct, but R is not the correct explanation of A.
- c. A is true but R is false.
- d. A and R both are false.
- 11. Assertion (A): ClF₃ has a bent T shape.
 - Reason (R): It has two lone pairs arranged at 180°.
 - a. A and R both are correct, and R is the correct explanation of A.
 - b. A and R both are correct, but R is not the correct explanation of A.
 - c. A is true but R is false.
 - d. A and R both are false.

2 Marks

- 12. What is the total number of σ and π bonds in the following molecules?
 - a. C_2H_6 b. C_2H_4 c. HCOOH d. CH_3COOH
- 13. Account for the following
 - a. The bond dissociation enthalpies of O-H bonds in H₂O are not the same.
 - b. The double bond in C₂ molecule consists of π bonds.
- 14. Amongst the following compounds, which do not obey the octet rule and why? a. H₂O b. PCl₅ c. H₂SO₄ d. BeF₂
- 15. Arrange the following in the increasing order of bond length. C_2 , $C_2^{\text{-}}$, $C_2^{2^{\text{-}}}$
- 16. Using the concept of hybridization explain the structures of PCl₅ and SF₆.
- 17. CO₂ and SO₂ are triatomic molecules. Do they have the same dipole moment? Justify your answer.
- 18. When a magnet is lowered in liquid oxygen, some O₂ stick to it. No such behaviour is observed with liquid N₂. Explain.

3 Marks

- 19. Draw the Lewis dot structures for a. H₂SO₄ b. PCl₃ c. H₂S
- 20. Which is more covalent? a. NaCl or MgCl₂ b. NaF or NaI c. HgCl₂ or CaCl₂
- 21. a Label the covalent radius and van der Waals radius (99 and 180 pm respectively) in the diagram of a chlorine molecule.
 - b. Which species of each group is predicted to have the strongest bond? i. O_2 , F_2 , N_2 ii. H_2 , H_2^- , H_2^+ iii. N_2 , N_2^+ , N_2^-

<u>5 Marks</u>

22. Complete the table

Molecule	Bond pairs	Lone pairs	Geometry	Shape	Hybridisation
CH ₄					
NH ₃					
SF_6					
BrF5					
H ₂ O					
PF ₅					
BCl ₃					

- 23. Give reasons for the following statements
 - a. The C-C bond length in ethane is 154 pm whereas in ethylene it is 134 pm.
 - b. H_2O is a liquid whereas H_2S is a gas.
 - c. PCl₅ is a reactive molecule.
 - d. The O- O bond lengths in O_3 are the same.
 - e. BF₃ is a non-polar molecule.

Answer key

1. a

- 2. b
- 3. d
- 4. a
- 5. a
- 6. b
- 7. c
- 8. a
- 9. b
- 10. a
- 11. c
- 12. a. 7 σ bonds, 0 π bond
 - b. 5 σ bonds, 1 π bond
 - c. 4 σ bonds, 1 π bond
 - d. 7 σ bonds, 1 π bond

13. a. Due to difference in the chemical environment.

b. This is because of the presence of four electrons in two pi molecular orbitals.

14. b, c, d

15.
$$C_2$$

 $(\sigma_1 s)^2 (\sigma_1^* s)^2 (\sigma_2 s)^2 (\sigma_2^* s)^2 (\pi_2 p_x^2 = \pi_2 p_y^2)$
 $B.O = \frac{1}{2} (8-4)$
 $= 2$
 C_2^-
 $(\sigma_1 s)^2 (\sigma_1^* s)^2 (\sigma_2 s)^2 (\sigma_2 s)^2 (\pi_2 p_x^2 = \pi_2 p_y^2) (\sigma_2 p z^1)$
 $B.O = \frac{1}{2} (9-4)$
 $= 2.5$
 C_2^{2-}
 $(\sigma_1 s)^2 (\sigma_1^* s)^2 (\sigma_2 s)^2 (\sigma_2 s)^2 (\pi_2 p_x^2 = \pi_2 p_y^2) (\sigma_2 p z^2)$
 $B.O = \frac{1}{2} (10-4)$
 $= 3$
Increasing bond length
 $C_2^{2-} < C_2^- < C_2$

16. PCl₅

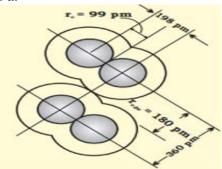
19..


SF₆.

No, they don't have the same dipole moment.

In CO₂, the dipoles cancel out and hence have zero dipole moment.

18. O_2 is paramagnetic (due to unpaired electrons). N_2 is diamagnetic (due to paired electrons) Electronic configurations of N_2 and O_2 .



20. a. $MgCl_2$, Mg^{2+} - smaller cation, greater charge- greater polarizing power.

b. NaI- I⁻ larger anion, greater polarisability

c. Hg²⁺, transition element -greater polarizing power.

21. a.

b.

•

i. N₂ ii. H₂

iii. N₂

22. Complete the table

Molecule	Bond pairs	Lone pairs	Shape	Hybridisation
CH ₄	4	0	Tetrahedral	sp ³
NH ₃	3	1	Trigonal pyramid	sp ³
SF ₆	6	0	Octahedral	sp ³ d ²
BrF ₅	5	1	Square pyramid	sp ³ d ²
H ₂ O	2	2	Bent	sp ³
PF5	5	0	Trigonal bipyramid	sp ³ d
BCl ₃	3	0	Trigonal planar	sp ²

23.

- a. Ethane is single covalent bonded, sp³ hybridised. Ethene is double bonded, sp² hybridisation, Thus shorter bond length.
- b. H_2O molecules are associated to each other using strong H bonds. Since associated they are in liquid state. In H_2S there is no H bond.
- c. Axial bonds are longer and weaker than equatorial bonds.
- d. Resonance, partial double bond character
- e. The resultant of 1^{st} and 2^{nd} dipoles cancel out the third dipole.

Prepared by Ms. Jasmin Joseph	Checked by : HOD - SCIENCE
-------------------------------	----------------------------