INDIAN SCHOOL AL WADI AL KABIR Department of Mathematics, 2020-2021 CLASS: X Chapter -2 Polynomials							13-09-2020	
Q.1.	If α and β are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to							
	A	1	B	-1	C	0	D	None of these
Q.2.	If one zero of the polynomial $\mathrm{P}(\mathrm{x})=\left(\mathrm{k}^{2}+4\right) \mathrm{x}^{2}+13 \mathrm{x}+4 \mathrm{k}$ is the reciprocal of the other, then k is							
	A	2	B	-2	C	1	D	-1
Q.3.	If α and β are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}$, then $(\alpha+1)(\beta+1)$ is equal to							
	A	c-1	B	1-c	C	C	D	c+1
Q.4.	A quadratic polynomial in which the sum of whose zeroes is zero and one of its zero is 3 is							
	A	$\mathrm{x}^{2}+3$	B	$\mathrm{x}^{2}-3$	C	$\mathrm{x}^{2}-9$	D	$\mathrm{x}^{2}+9$
Q.5.	If $x+2$ is a factor of $x^{2}+a x+2 b$ and $a+b=4$, then							
	A	$\mathrm{a}=1, \mathrm{~b}=3$	B	$\mathrm{a}=5, \mathrm{~b}=-1$	C	$\mathrm{a}=-1, \mathrm{~b}=5$	D	$\mathrm{a}=3, \mathrm{~b}=1$
Q.6.	If one zero of the quadratic polynomial $\mathrm{x}^{2}+3 \mathrm{x}+\mathrm{k}$ is 2, then the value of k is							
	A	5	B	-5	C	10	D	-10
Q.7.	The zeroes of the quadratic polynomial $\mathrm{x}^{2}+99 \mathrm{x}+127$ are							
	A	both positive	B	both negative	C	one positive and one negative	D	both equal
Q.8.	Which of the following is not the graph of a quadratic polynomial?							
	A		B		C		D	
Q.9.	If graph of a polynomial does not intersect the x-axis but intersects y-axis in one point, then no. of zeroes of the polynomial is equal to							
	A	0	B	1	C	0 or 1	D	None of these
Q. 10	A polynomial of degree n has							
	A	only 1 zero	B	at least n zeroes	C	at most n zeroes	D	more than n zeroes

Q11.	Zeroes of $\mathrm{p}(\mathrm{z})=\mathrm{z}^{2}-27$ are ___ and _
Q12.	If a and b are the zeroes of the polynomial, $x^{2}-11 x+30$, then the value of $a^{3}+b^{3}=\ldots \ldots \ldots \ldots$.
Q13.	If one of the zeroes of the quadratic polynomial $(\mathrm{k}-1) \mathrm{x}^{2}+\mathrm{kx}+1$ is -3 , then the value of k is $\ldots \ldots$.
Q14.	If sum of the squares of zeroes of the quadratic polynomial $6 x^{2}+x+k$ is $25 / 36$, the value of k is -----
Q15.	If $(x+1)$ is a factor of $x^{2}-3 a x+3 a-7$, then the value of a is ------
Q16.	If α and β are the zeros of the quadratic polynomial $f(x)=2 x^{2}-5 x+7$, find a polynomial whose zeros are $2 \alpha+3 \beta$ and $3 \alpha+2 \beta$?
Q17.	If one root of the polynomial $p(y)=5 y^{2}+13 y+m$ is reciprocal of other, then find the value of ' m '?
Q18.	If the graph of a polynomial intersects the x - axis at only one point, can it be a quadratic polynomial?
Q19.	If α, β are the two zeros of the polynomial $f(y)=y^{2}-8 y+a$ and $\alpha^{2}+\beta^{2}=40$, find the value of ' a '?
Q20.	Find the zeroes of the quadratic polynomial $5 x^{2}-4-8 x$ and verify the relationship between the zeroes and the coefficient of the polynomial.
Q21.	If α and β are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of ' a ' if $3 \alpha+2 \beta=20$.
Q22.	Find a quadratic polynomial whose zeroes are -4 and 3 and verify the relationship between the zeroes and the coefficients.
Q23.	If the product of zeroes of the polynomial $\mathrm{ax}^{2}-6 x-6$ is 4 , find the value of ' a '.
Q24.	Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12 . Hence, find the zeroes of the polynomial.
Q25.	If a and b are zeroes of the polynomial $x^{2}+7 x+7$, find the value of $a^{-1}+b^{-1}-2 a b$

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1	B	2	A	3.	B	4	C
	5	D	6	D	7	B	8	D
	9	A	10	C	11	$3 \sqrt{3},-3 \sqrt{3}$	12	341
	13	4/3	14	-2	15	1	16	$\mathrm{k}\left(\mathrm{x}^{2}-25 / 2 \mathrm{x}+41\right)$
	17	5	18	yes	19	12	20	$\mathrm{X}=2, \mathrm{x}=-2 / 5$
	21	-16	22	$\mathrm{x}^{2}+\mathrm{x}-12$	23	-3/2	24	$\mathrm{x}^{2}-8 \mathrm{x}+12$
	25	-15						

