INDIAN SCHOOL AL WADI AL KABIR Department of Mathematics, 2020-2021 CLASS: X Chapter -2 Polynomials 13-09-2020									
Q.1.	If \propto and β are the zeroes of the polynomial $p(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to								
	A	1	В	-1	С	0	D	None of these	
Q.2.	If o	If one zero of the polynomial $P(x) = (k^2 + 4) x^2 + 13x + 4k$ is the reciprocal of the other, then k is							
	A	2	В	-2	С	1	D	-1	
Q.3.	If o	If \propto and β are the zeroes of the polynomial $p(x) = x^2 - p(x + 1) - c$, then $(\propto + 1)(\beta + 1)$ is equal to							
	A	c-1	B	1-c	С	С	D	c+1	
Q.4.	Aq	A quadratic polynomial in which the sum of whose zeroes is zero and one of its zero is 3 is						is 3 is	
	Α	$x^2 + 3$	B	$x^2 - 3$	С	$x^2 - 9$	D	$x^{2} + 9$	
Q.5.	If x	If $x + 2$ is a factor of $x^2 + ax + 2b$ and $a + b = 4$, then							
	A	a = 1, b = 3	B	a = 5, b = -1	С	a = -1, b = 5	D	a = 3, b = 1	
Q.6.	If o	If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is							
	A	5	B	-5	С	10	D	-10	
Q.7.	The	zeroes of the quadratic po	lynor	mial $x^2 + 99x + 127$ are			_		
	A	both positive	В	both negative	С	one positive and one negative	D	both equal	
Q.8.	Wł	Which of the following is not the graph of a quadratic polynomial?							
	А		В		С		D		
Q.9.	If g zero	If graph of a polynomial does not intersect the x-axis but intersects y-axis in one point, then no. of zeroes of the polynomial is equal to							
	A	0	B	1	C	0 or 1	D	None of these	
Q.10	A polynomial of degree n has								
	A	only 1 zero	B	at least n zeroes	C	at most n zeroes	D	more than n zeroes	

Q11.	Zeroes of $p(z) = z^2 - 27$ are and					
Q12.	If a and b are the zeroes of the polynomial, $x^2-11x+30$, then the value of $a^3 + b^3 = \dots$					
Q13.	If one of the zeroes of the quadratic polynomial $(k - 1)x^2 + kx + 1$ is -3, then the value of k is					
Q14.	If sum of the squares of zeroes of the quadratic polynomial $6x^2 + x + k$ is 25/36, the value of k is					
Q15.	If $(x + 1)$ is a factor of $x^2 - 3ax + 3a - 7$, then the value of a is					
Q16.	If α and β are the zeros of the quadratic polynomial $f(x) = 2x^2 - 5x + 7$, find a polynomial whose zeros are $2\alpha + 3\beta$ and $3\alpha + 2\beta$?					
Q17.	If one root of the polynomial $p(y) = 5y^2 + 13y + m$ is reciprocal of other, then find the value of 'm'?					
Q18.	If the graph of a polynomial intersects the x – axis at only one point, can it be a quadratic polynomial?					
Q19.	If α , β are the two zeros of the polynomial $f(y) = y^2 - 8y + a$ and $\alpha^2 + \beta^2 = 40$, find the value of 'a'?					
Q20.	Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the relationship between the zeroes and the coefficient of the polynomial.					
Q21.	If α and β are zeroes of the quadratic polynomial $x^2 - 6x + a$; find the value of 'a' if $3\alpha + 2\beta = 20$.					
Q22.	Find a quadratic polynomial whose zeroes are –4 and 3 and verify the relationship between the zeroes and the coefficients.					
Q23.	If the product of zeroes of the polynomial $ax^2 - 6x - 6$ is 4, find the value of 'a'.					
Q24.	Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.					
Q25.	If a and b are zeroes of the polynomial x^2+7x+7 , find the value of $a^{-1}+b^{-1}-2ab$					

Answers	1	В	2	А	3.	В	4	С
	5	D	6	D	7	В	8	D
	9	А	10	С	11	3√ <u>3</u> , -3√ <u>3</u>	12	341
	13	4/3	14	-2	15	1	16	$k(x^2 - 25/2 x + 41)$
	17	5	18	yes	19	12	20	X=2, x = -2/5
	21	-16	22	$x^{2} + x - 12$	23	-3/2	24	x ² - 8x +12
	25	-15						