INDIAN SCHOOL AL WADI AL KABIR		
CLASS: XII	DEPARTMENT: SCIENCE 2020 -2021 SUBJECT : CHEMISTRY	DATE: 31.08.2020
HANDOUT	TOPIC: SOLID STATE	NOTE: A4 FILE FORMAT
NAME OF THE STUDENT:	CLASS & SEC:	ROLL NO:

Imperfections in solids

- Defects in solids are basically irregularities in the arrangement of constituent particles.
- > Defects are of two types; *Point defects and line defects*.
- Point defects are the irregularities from ideal arrangement around a point or an atom in a crystalline substance.
- Line defects are the irregularities from ideal arrangement in entire rows of lattice points.

Types of point defects

(a) Stoichiometric defects

- > They are also called intrinsic or thermodynamic defects.
- > These defects that do not disturb the stoichiometry of the solid.
- For non-ionic solids, stoichiometric defects are of two types, vacancy defects and interstitial defects

i) Vacancy defect

- Vacancy defect is developed when some of the lattice sites are vacant. This results in decrease in density of the substance.
- This defect can also be developed when a substance is heated.

ii) Interstitial defect

Interstitial defect is developed when some constituent particles occupy an interstitial site. This defect increases the density of the substance.

Stoichiometric defects in ionic solids

- > Ionic solids must always maintain electrical neutrality.
- > They exhibit defects as Frenkel and Schottky defects.

Frenkel defect

- This defect is shown by ionic solids in which there is large difference in the size of anion and cation. Usually cation is smaller.
- The smaller ion is dislocated from its normal site to an interstitial site. It creates a vacancy defect at its original site and an interstitial defect at its new location.
- Frenkel defect is also called dislocation defect. It does not change the density of the solid.
- > Eg:- ZnS, AgCl, AgBr and AgI due to small size of Zn^{2+} and Ag^+ ions.

Schottky defect

- This defect is shown by ionic substances in which the cation and anion are of almost similar sizes.
- It is basically a vacancy defect in ionic solids. The number of missing cations and anions are equal so that electrical neutrality is maintained.
- Density of the substance decreases due to Schottky defect.

Eg:- NaCl, KCl, CsCl and AgBr.

* AgBr shows both Frenkel as well as Schottky defects.

(b) Impurity defects

- If molten NaCl containing a little amount of SrCl₂ is crystallised, some of the sites of Na⁺ ions are occupied by Sr²⁺.
- Each Sr²⁺ replaces two Na⁺ ions. It occupies the site of one ion and the other site remains vacant.
- The cationic vacancies thus produced are equal in number to that of Sr²⁺ ions.

* Another similar example is the solid solution of $CdCl_2$ and AgCl.

(c) Non-stoichiometric defects

- > Due to these defects, stoichiometry of the substance is disturbed.
- Non-Stoichiometric defects are of two types: (i) metal excess defect and (ii) metal deficiency defect.

(i) Metal excess defect

a) Metal excess defect due to anionic vacancies

- When crystals of NaCl are heated in an atmosphere of sodium vapour, the sodium atoms are deposited on the surface of the crystal.
- The Cl⁻ ions diffuse to the surface of the crystal and combine with Na atoms to give NaCl. This happens by the loss of electrons by sodium atoms to form Na⁺ ions.
- The released electrons diffuse into the crystal and occupy anionic sites. As a result, the crystal now has an excess of sodium.

- The anionic sites occupied by unpaired electrons are called F- centres (German word Farbenzenter for colour centre).
- > They impart **yellow** colour to the crystals of NaCl.

- The colour results by excitation of these electrons when they absorb energy from the visible light falling on the crystals.
- Excess of lithium makes LiCl crystals pink and excess of potassium makes KCl crystals violet (or lilac).

b) Metal excess defect due to the presence of extra cations at interstitial sites

- > Zinc oxide is white in colour at room temperature.
- > On heating it loses oxygen and turns **yellow**.

$$ZnO \xrightarrow{heating} Zn^{2+} + \frac{1}{2}O_2 + 2e^{-}$$

- Now there is excess of zinc in the crystal and its formula becomes Zn_{1+x}O.
- The excess Zn²⁺ ions move to interstitial sites and the electrons to neighbouring interstitial sites.

(ii) Metal deficiency defect

- This defect arises when metal ions are present in different valency. A typical example of this type is FeO which is mostly found with a composition of Fe_{0.95}O.
- In crystals of FeO some Fe²⁺ cations are missing and the loss of positive charge is made up by the presence of required number of Fe³⁺ ions.

QUESTION

Analysis shows that nickel oxide has the formula $Ni_{0.98}O_{1.00}$. What fractions of nickel exist as Ni^{2+} and Ni^{3+} ions?

ANSWER

Let Ni²⁺ be x so that Ni³⁺ will be 0.98-x. The compound is electrically neutral. Therefore, 2x + 3(0.98-x) - 2 = 0x = 0.94% of Ni²⁺ $= \frac{0.94}{0.98} \times 100$ = 95.9 %% of Ni³⁺ = 100 - 95.9= 4.1 %

Prepared by Mr. Anoop Stephen

Checked by :HOD – Science