

INDIAN SCHOOL AL WADI AL KABIR

Class X, Mathematics *Worksheet- Triangles*

09-08-20

				SECTION C (3 n	narks)		
Q10	D, E and F are respectively the mid-points of sides AB, BC and CA of Δ ABC. Find the ratio of the areas of Δ DEF and Δ ABC.							
Q11	Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.							
Q12	The perpendicular from A on side BC of a \triangle ABC meets BC at D such that DB = 3CD. Prove that $2AB^2 = 2AC^2 + BC^2$.							
Q13	AD and PM are medians of triangles ABC and PQR respectively where $\Delta ABC \sim \Delta PQR$. Prove that $\frac{AB}{PQ} = \frac{AD}{PM}$.							
Q14	In \triangle ABC, \angle B = 90° and D is the mid-point of BC. Prove that AC ² = AD ² + 3CD ² .							
Q15	Diagonals AC and BD of a trapezium ABCD with AB II DC intersect each other at the point O. Show that $\frac{OA}{OC} = \frac{OB}{OD}$.							
				SECTION D (4 n	narks)		
Q16	In Figure, ABC is a triangle in which \angle ABC > 90° and AD \perp CB produced. Prove that AC ² = AB ² + BC ² + 2 BC. BD. D B C							
Q17	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.							
Q18	Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.							
				Answers				
			2	С	3.	С	4	А
Answers	1	A	_					