			INDIAN SCHOOL AL WADI AL KABIR Class X, Mathematics Worksheet- Triangles 09-08-20						
OBJECTIVE TYPE (1 Mark)									
Q.1.	In the given figure, $\mathrm{XY} \\| \mathrm{QR}, \frac{P Q}{\mathrm{XQ}}=\frac{7}{3}$ and $P R=6.3 \mathrm{~cm}$ then $Y R$ equals :								
	A	2.7 cm	B	18.9 cm	C	2.1 cm	D	0.9 cm	
Q.2.	In the given figure, $\angle \mathrm{BAC}=90^{\circ}$ and $A D \perp B C$, then								
	A	$B D \times C D=B C^{2}$	B	$A B \times A C=B C^{2}$	C	$B D \times C D=A D^{2}$	D	$A B \times A C=A D^{2}$	
Q.3.					In the given figure, $\triangle A B C \sim \triangle P Q R, P M$ is median of $\triangle P Q R$. If $\operatorname{ar}(\triangle A B C)=289 \mathrm{~cm}^{2}$, $B C=17 \mathrm{~cm}, M R=6.5 \mathrm{~cm}$, then the area of $\triangle P Q M$ is :				
	A	$169 \mathrm{~cm}^{2}$	B	$13 \mathrm{~cm}^{2}$	C	$84.5 \mathrm{~cm}^{2}$	D	$144.5 \mathrm{~cm}^{2}$	
Q.	In triangles PQR and MST, $\angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ}$ and $\angle \mathrm{S}=25^{\circ}$, then								
	A	$\Delta \mathrm{TSM} \sim \Delta \mathrm{PQR}$	B	$\Delta \mathrm{QPR} \sim \Delta \mathrm{STM}$	C	$\Delta \mathrm{QPR} \sim \Delta \mathrm{MST}$	D	$\Delta T S M \cong \triangle P Q R$	

Fill in the blanks(1mark)
The area of two similar triangles are $25 \mathrm{sq} . \mathrm{cm}$ and $121 \mathrm{sq} . \mathrm{cm}$. The ratio of their
Q5. corresponding sides is \qquad

In the given figure, $\mathrm{QA} \perp_{\mathrm{AB}}$ and $\mathrm{PB} \perp \mathrm{AB}$. If $\mathrm{AO}=20 \mathrm{~cm}, \mathrm{BO}=12 \mathrm{~cm}, \mathrm{~PB}=18 \mathrm{~cm}$,

Q6. then $A Q$ is

SECTION B (2 marks)

Q7. $D E$ is drawn parallel to base $B C$ of $\triangle A B C$, meeting $A B$ in D and $A C$ at E. If $\frac{A B}{B D}=4$ and $C E=2 \mathrm{~cm}$, find the length of $A E$

Q8. In Figure, E is a point on CB produced of an isosceles $\triangle A B C$, with side $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\Delta \mathrm{ABD} \sim \Delta \mathrm{ECF}$.

Q9.

Q10	D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.
Q11	Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
Q12	The perpendicular from A on side $B C$ of a $\triangle A B C$ meets $B C$ at D such that $D B=3 C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
Q13	$A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$ respectively where $\triangle A B C \sim \triangle P Q R$. Prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.
Q14	In $\triangle A B C, \angle B=90^{\circ}$ and D is the mid-point of $B C$. Prove that $A C^{2}=A D^{2}+3 C D^{2}$.
Q15	Diagonals AC and BD of a trapezium ABCD with AB II DC intersect each other at the point O. Show that $\frac{O A}{O C}=\frac{O B}{O D}$.

SECTION D (4 marks)

Q16 In Figure, ABC is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C$. $B D$.

Q17	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.							
Q18	Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.							
Answers								
	1	A	2	C	3.	C	4	A
	5	$5: 11$	6	30 cm	7	6 cm	1	1:4

