	Depa Math		INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics MCQ- Introduction To Euclid's Geometry					
MULTIPLE CHOICE QUESTIONS								
Q.1.	What is the minimum number of lines required to make a closed figure?							
	A	One	B	Two	C	Three	D	Four
Q.2.	Euclid stated, If equals are added to equals the wholes are equal in the form of:							
	A	A Theorem	B	A Definition	C	An Axiom	D	None of these
Q.3.	How many dimensions does a surface has?							
	A	one	B	two	C	three	D	four
Q.4.	Which of the following are boundaries of a surface?							
	A	lines	B	curves	C	surfaces	D	points
Q.5.	John is of the same age as Mohan. Ram is also of the same age as Mohan. State the Euclid's axiom that illustrates the relative ages of John and Ram:							
	A	First Axiom	B	Second Axiom	C	Third Axiom	D	Fourth Axiom
Q.6.	If a straight line falling on two straight lines makes the interior angles on the same side of it, whose sum is 120°, then the two straight lines, if produced indefinitely, meet on the side on which the sum of angles is:							
	A	less than 120°	B	greater than 120°	C	equal to 120°	D	greater than 180°
Q.7.	The three steps from solids to points are:							
	A	Solids - surfaces - lines - points	B	Solids - lines surfaces - points	C	Lines - points surfaces - solids	D	Lines - surfaces points - solids

Q.8.	The total number of propositions in the Elements are:							
	A	465	B	460	C	13	D	55
Q.9.	A pyramid is a solid figure, the base of which is:							
	A	only a triangle	B	only a square	C	only a rectangle	D	any polygon
Q.10.	Greek's emphasized on:							
	A	Inductive reasoning	B	Deductive reasoning	C	Both A and B	D	Practical use of geometry
Q.11.	The first known proof that 'the circle is bisected by its diameter' was given by:							
	A	Pythagoras	B	Thales	C	Euclid	D	Hypatia
Q.12.	For every line ' l ' and a point P not lying on it, the number of lines that passes through P and parallel to ' l ' are:							
	A	one	B	two	C	three	D	no line
Q.13.	The things which are double of the same thing are:							
	A	equal to one another	B	unequal	C	halves of the same thing	D	double of the same thing
Q.14.	Axioms are assumed:							
	A	universal truths in all branches of mathematics	B	universal truths specific to geometry	C	theorems	D	definitions
Q.15.	The number of dimension(s), a point has:							
	A	0	B	1	C	2	D	3
Q.16.	It is known that if $\mathrm{x}+\mathrm{y}=10$ then $\mathrm{x}+\mathrm{y}+\mathrm{z}=10+\mathrm{z}$. The Euclid's axiom that illustrates this statement is:							
	A	First Axiom	B	Second Axiom	C	Third Axiom	D	Fourth Axiom
Q.17.	Which of the following needs a proof?							
	A	Theorem	B	Axiom	C	Definition	D	Postulate

Q.18.	For solving the equation, $\mathrm{a}-15=25$, the Euclid s axiom used is:							
	A	First Axiom	B	Second Axiom	C	Third Axiom	D	Fourth Axiom
Q.19.	If the point P lies between M and N and Cis the midpoint of MP then:							
	A	$\mathrm{MP}+\mathrm{CP}=\mathrm{MN}$	B	$\mathrm{MC}+\mathrm{CP}=\mathrm{MN}$	C	$\mathrm{MC}+\mathrm{PN}=\mathrm{MN}$	D	$\mathrm{CN}+\mathrm{CP}=\mathrm{MN}$
Q.20.	If $2 \mathrm{x}=2 \mathrm{y}$ and $\mathrm{y}=\mathrm{z}$, then:							
	A	$y>z$	B	z> x	C	$\mathrm{x}=\mathrm{z}$	D	none
Q.21.	It is known that $\mathrm{a}+\mathrm{b}=4$, then $2(\mathrm{a}+\mathrm{b})=8$. The Euclid's axiom which illustrate this statement is:							
	A	First Axiom	B	Second Axiom	C	Sixth Axiom	D	Seventh Axiom
Q.22.	In the figure, if $\mathrm{AB}=\mathrm{BC}$ and $\mathrm{BX}=\mathrm{BY}$, then:							
	A	$B X=C Y$	B	$\mathrm{AX}=\mathrm{CY}$	C	$B Y=A X$	D	$A X=B X$
Q.23.	If $\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{B}=\angle \mathrm{C}$, Euclid's axiom that establishes the relation between $\angle \mathrm{A}$ and $\angle \mathrm{C}$ is:							
	A	First Axiom	B	Second Axiom	C	Third Axiom	D	Fourth Axiom
Answers								
$\begin{aligned} & 6 \\ & \vdots \\ & 3 \\ & 6 \\ & \text { B } \\ & \hline \end{aligned}$	1	C	2	C	3.	B	4	A
	5	A	6	C	7	A	8	A
	9	D	10	B	11	B	12	A
	13	A	14	A	15	A	16	B
	17	A	18	B	19	D	20	C
	21	C	22	B	23	A		

