CLASS: IX		INDIAN SCHOOL AL WADI AL KABIR Department of Mathematics, 2020-2021 Chapter -3 Coordinate Geometry					10-08-2020	
Q.1.	The points $(-5,-8)$ lies in:							
	A	First quadrant	B	Second quadrant	C	Third quadrant	D	Fourth quadrant
Q.2.	The point ($0,-5$) lies:							
	A	On the x -axis	B	On the y -axis	C	In the first quadrant	D	None of the above
Q.3.	Ordinate of all the points in the x -axis is:							
	A	0	B	1	C	-1	D	Any natural number
Q.4.	Points (1, -2), (1, -3), (-4, 5), (0, 0), (3, -3)							
	A	Lie in III quadrant	B	Lie in II quadrant	C	Lie in IV quadrant	D	Do not lie in the same quadrant
Q.5.	If the x -coordinate of a point is zero, then this point lies:							
	A	In II quadrant	B	In I quadrant	C	On x -axis	D	On y-axis
Q.6.	On plotting $\mathrm{P}(-3,8), \mathrm{Q}(7,-5), \mathrm{R}(-3,-8)$ and $\mathrm{T}(-7,9)$ are plotted on the graph paper, then point(s) in the third quadrant are:							
	A	P and T	B	Q and R	C	Only R	D	P and R
Q.7.	The point whose ordinate is 8 and lies on y-axis:							
	A	$(0,8)$	B	$(8,0)$	C	$(5,8)$	D	$(8,5)$
Q.8.	The mirror image of the point (3,4) with respect to y -axis is:							
	A	$(3,4)$	B	$(-3,4)$	C	$(3,-4)$	D	$(-3,-4)$
Q.9.	The perpendicular distance of a point $\mathrm{P}(5,8)$ from the y -axis is:							
	A	5 units	B	8 units	C	3 units	D	13 units
Q. 10	A point $(x+2, x+4)$ lies in the first quadrant, the mirror image of this point with respect to x-axis is $(5,-7)$. What is the value of x ?							
	A	1	B	-1	C	2	D	3

Q11.	If y-coordinate of a point is zero, then where will this point lie in the coordinate plane?
Q12.	In which quadrant(s), abscissa of a point is negative?
Q13.	Find the point whose ordinate is -3 and which lies on y -axis.
Q14.	The point in which abscissa and ordinate have different signs will lie in which quadrant(s)?
Q15.	Find the perpendicular distance of the point $P(5,7)$ from the y-axis.
Q16.	Write the coordinates of a point on x -axis at a distance of 6 units from the origin in the positive direction of x -axis.
Q17.	If the coordinates of two points are $\mathrm{P}(-2,3)$ and $\mathrm{Q}(-3,5)$, then find (abscissa of P$)-($ abscissa of Q$)$.
Q18.	Without plotting the points indicate the quadrant in which they will lie, if i. Ordinate is -3 and abscissa is -2 ii. Abscissa is 5 and ordinate is -6
Q19.	Plot the points A $(5,5)$ and $\operatorname{B}(-5,5)$ in Cartesian plane. Join AB, OA and OB. Name the type of triangle so obtained.
Q20.	Find the coordinates of the point i. which lies on both x and y -axis. ii. whose abscissa is 5 and lies on x -axis. iii. whose ordinate is -4 and lies on y-axis.
Q21.	Plot the points $\mathrm{A}(2,0), \mathrm{B}(5,0)$ and $\mathrm{C}(5,3)$. Find the coordinate of the point D such that ABCD is a square.
Q22.	Plot the points $\mathrm{P}(-2,1), \mathrm{Q}(2,1), \mathrm{R}(3,2)$ and $\mathrm{S}(-1,2)$ and write the name of the figure thus obtained.
Q23.	Plot the points $(-3,0),(5,0),(0,4)$ on Cartesian plane. Name the figure formed by joining these points and find its area.
Q24.	Draw the quadrilateral with vertices $(-4,4),(-6,0),(-4,-4),(-2,0)$. Name the type of quadrilateral and find its area.
Q25.	Write the coordinates of the vertices of a rectangle whose length and breadth are 6 and 3 units respectively, one vertex at the origin, the longer side lies on the y-axis and one of the vertices lies in the second quadrant.
Q26.	From the given figure, write a) the coordinates of the points B and F. b) the point identified by the coordinates $(1,1)$ c) the abscissa of the points D and H . d) the ordinates of the points A and C . e) the quadrant in which points B and I lie. f) the perpendicular distance of the point G from the x-axis. $\mathrm{g})$ the perpendicular distance of the point I from the y -axis. h) the point whose perpendicular distance from y-axis is 2 units.

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	C	2	B	3.	A	4	D
	5	D	6	C	7	A	8	B
	9	A	10	D	11	on the x - axis	12	II and III quadrants
	13	(0, -3)	14	II and IV quadrants	15	5	16	$(6,0)$
	17	1	18	i) III quadrant ii) IV quadrant	19	An isosceles triangle	20	i) $(0,0)$ ii) $(5,0)$ iii) $(0,-4)$
	21	D (2, 3)	22	Parallelogram	23	Triangle, 16 square units	24	Rhombus, 16 square units
	25	$\begin{aligned} & (0,0),(0,6),(-3,6), \\ & (-3,0) \end{aligned}$	26	a) $\mathrm{B}(-5,-4), \mathrm{F}(6,0)$ b) D c) $\mathrm{D}-1, \mathrm{H}-0$	26	d)A 1 , C 0 e) III quadrant f) 4 units	26	g) 2 units h) C and I

