Class: XI	Department: SCIENCE 2020-2021	Date of completion:
	SUBJECT : PHYSICS	02.07 .2020
Worksheet No:02 With answers	Topic: MOTION IN A PLANE	Note:

OBJECTIVE TYPE QUESTIONS

[1] Two projectiles A B are thrown from the same point with the same speed of $30 \mathrm{~m} / \mathrm{s}$ at angles of projection 50° and θ respectively, so that both the projectiles having the same range. Then the angle θ is
[a] 45^{0} [b.] 40^{0} [c] 50° [d] 50°
For same range, two angles are θ and $90-\theta$

$$
\theta=90-50=40
$$

[2] The range of a projectile, when launched at an angle of 15° with horizontal is 1.5 km . What is the range of the projectile, when launched at an angle of 45° to the horizontal?
Horizontal range $=\mathbf{R}=\mathbf{u}^{2} \sin 2 \boldsymbol{\theta} / \mathrm{g}$
$\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}$
$1.5=\frac{\mathrm{u}^{2} \sin 30}{\mathrm{~g}} \quad$ or $\frac{\mathrm{u}^{2}}{\mathrm{~g}}=3$
$\mathrm{R} 1=\frac{\mathrm{u}^{2} \sin 90}{\mathrm{~g}}=3 \mathrm{x} 1=3 \mathrm{~km}$
[a] 4km[b] 5km [c] $3.5 \mathrm{~km}[\mathrm{~d}] 3 \mathrm{~km}$
[3] If the muzzle velocity of the shell is $400 \mathrm{~m} / \mathrm{s}$, the Maximum range of a gun along horizontal is
[a] 4 km [b.] 16 km [c] 8 km [d] 20km
$\operatorname{Rmax}=\frac{\mathrm{u}^{2}}{\mathrm{~g}}=\frac{400 \times 400}{10}=16 \mathrm{~km}$
[4] The angular speed of a fly-wheel making 120 r.p.m is
$\omega=2 \pi f=2 \pi \frac{120}{60}=4 \pi \mathrm{rad} / \mathrm{s}$
[a] $4 \pi \mathrm{rad} / \mathrm{s}$
[b] $\pi \mathrm{rad} / \mathrm{s}$
[c] $2 \pi \mathrm{rad} / \mathrm{s}$
[d] $4 \pi^{2} \mathrm{rad} / \mathrm{s}$
[5] A body is whirled in a horizontal circle of radius 20 cm . It has an angular velocity of 10 $\mathrm{rad} / \mathrm{s}$. What is the linear velocity at any point on the circular path?
$\mathrm{V}=\mathrm{r} \omega=0.2 \times 10=2 \mathrm{~m} / \mathrm{s}$
[a] $10 \mathrm{~m} / \mathrm{s}$
[b] $20 \mathrm{~m} / \mathrm{s}$
[c] $\sqrt{2} \mathrm{~m} / \mathrm{s}[\mathrm{d}] 2 \mathrm{~m} / \mathrm{s}$

Answer Key [1]b [2][d][3]b[4]a[5]d

Very Short answer type questions (1marks)

[6] Name the only force acting on a projectile, when it is projected into the atmosphere?
Weight /force due to gravity
[7] A ball is thrown in a parabolic path. Is there any point at which the acceleration is perpendicular to the velocity?
Maximum height
[8] A ball ' A ' is dropped from the top a tower and another ball ' B ' is projected horizontally from the same point. Which ball will reach the ground first ?
Both reaches the ground simultaneously
[9]What is the angle between the velocity vector and acc. vector in uniform circular motion ?
90
[10] Two bullets A and B are fired horizontally with different velocities, U_{A} and U_{B} respectively .If U_{A} is greater than U_{B}, which will reach the ground first. why?
Both reaches the ground simultaneously

Answer Key

[6] force due to gravity
[7]maximum height
[8] both at same time [9]90
[10] both at same time

Short answer type questions (2 marks)

[11] A boy is moving with velocity $3 \mathrm{~km} / \mathrm{h}$ along east and the rain is falling vertically with velocity $4 \mathrm{~km} / \mathrm{hr}$. Calculate the velocity of rain relative to boy [take $\tan 37^{\circ}=0.75$]
$\mathrm{Vrb}=\mathrm{Vr}-\mathrm{Vb}=\mathrm{Vr}+-\mathrm{Vb}=$?
Apply triangle law of vector addition
$\mathrm{Vrb}=\sqrt{v r^{2}+v b^{2}}=\sqrt{4^{2}+3^{2}}=5 \mathrm{~km} / \mathrm{hr}$
Tan $\theta=\frac{o p p}{a d j}=\frac{3}{4}=0.75$ or $\theta=37^{\circ}$
[12]Show that when the horizontal range is maximum, height attained by the body is one fourth the maximum range in the projectile motion.

$$
\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}} \quad---[\mathrm{a}] \mathrm{H}=\frac{\mathrm{u}^{2} \sin _{\theta}^{2}}{2 \mathrm{~g}}-[\mathrm{b}]
$$

For $\theta=45^{\circ}$
$\mathrm{H}=\frac{\mathrm{u}^{2} \sin _{\theta}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{~g}}==\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}$
Ie $\mathrm{H}=\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}=\frac{1}{4}$ of the Rmax.
[13] A cricket ball is thrown at a speed of $28 \mathrm{~m} / \mathrm{s}$ in a direction 30° above the horizontal. [i]Maximum height[ii] time of flight[iii] time taken to reach maximum height[iv] horizontal range.
[i] $\mathrm{H}=\frac{\mathrm{u}^{2} \sin _{\theta}^{2}}{2 \mathrm{~g}}=\frac{28^{2} x \frac{1}{2} x 1 / 2}{2 \times 9.8}=10 \mathrm{~m}$
[ii] $T=\frac{2 u \sin \theta}{g}=\frac{2 \times 28 \times \sin 30}{9.8}=2.9 \mathrm{~s}$
[iii] t $=\mathrm{T} / 2=1.45 \mathrm{~s}$
[iv] $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}=28 \times 28 \times \sin 60 / 9.8=69.3 \mathrm{~m}$

Long answer question (3 marks)

[14] What is angular velocity and angular acceleration? Establish a relation with
a) Angular velocity and linear velocity
b) Angular acceleration and linear acceleration
[15] Show that there are two angles θ_{1} and θ_{2} projections for the same horizontal range.
[16]An aero plane moving horizontally at $150 \mathrm{~m} / \mathrm{s}$ releases a bomb at a height of 500 m . The bomb hits the target. what was the horizontal distance of the aero plane from the target when the bomb was released ?

Ans. Horizontal distance $=$ velocity a $\quad \mathrm{x}$ time $=150 \times \mathrm{t}-[\mathrm{a}]$
$\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{gt}^{2}$
$500=0+1 / 2 \times 10 \times t^{2} \quad$ or $t=10 s$
[a] gives Horizontal distance $==150 \times 10=1500 \mathrm{~m}$

Very Long answer question (5 marks)

[17] Derive an expression to find the centripetal acceleration and hence centripetal force
[18]What is centripetal acceleration and centripetal force? Derive an expression for centripetal acceleration\& centripetal force.
[19] Show that the path traced by a projectile is parabola. Derive the equations to find the [i]Maximum height[ii] time of flight[iii] time taken to reach maximum height[iv] horizontal range.
[20] State the parallelogram law of vector addition. Derive an expression for magnitude and direction of resultant of the two vectors.

