	INDIAN SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE – 2020 – 2021 SUBJECT : CHEMISTRY		Date of submission: 06.07.2020
Worksheet No: 03 WITH ANSWERS	Chapter: SOME BASIC CONCEPTS OF CHEMISTRY		Note: A4 FILE FORMAT
NAME OF THE ST	rudent	CLASS & SEC:	ROLL NO.

1. What is the mass percent of C in Glucose?

a. 40%	b. 0.04%
c. 7.2%	d. 18%

- 2. Which of the following statements indicates that law of multiple proportion is being followed.
 - a. Sample of water taken from any source will always have hydrogen and oxygen in the ratio 2:1.
 - b. Carbon forms two oxides namely CO_2 and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1.
 - c. A 10 g ribbon of Mg burns in oxygen and the entire magnesium converts to its oxide.
 - d. When two elements combine with a fixed mass of the third element, the ratio in which they do so is simple whole number ratio.
- 3. Match the items in Column I and II.

Column I	Column II
Physical quantity	Unit
i. Molarity	a. gml ⁻¹
ii. Mole fraction	b. Mol
	1
iii. Mole	c. molkg ⁻¹
iv. Molality	d. Unitless
	e. molL ⁻¹

a. i - a, ii - e, iii - b, iv - cb. i - b, ii - e, iii - d, iv - cc. i - e, ii - d, iii - b, iv - cd. i - e, ii - a, iii - b, iv - c

4. One mole of H₂SO₄ contains _____ atoms of oxygen.

5. Under similar conditions, the ratio by volumes of gaseous reactants and gaseous products is _____

6. Which of the following compounds has same empirical formula as that of glucose?
a. CH₃CHO
b. CH₃COOH
c. CH₃OH
d. C₂H₆

7. Which has maximum number of atoms?

a. 24 g of C	b. 56 g of Fe
c. 27 g of Al	d. 108 g of Ag

8. The modern atomic weight scale is based on

a. ¹² C	b. ¹⁶ O
c. ¹ H	d. ¹³ C

Questions 9- 10 are Assertion Reason type questions

- a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
- c. If Assertion is correct and Reason is wrong.
- d. If Assertion is wrong and Reason is correct.
- 9. Assertion: 1 g atom of Sulphur contains Avogadro number of molecules. Reason: Atomicity of S is eight.
- 10. Assertion: The formula of Calcium carbide is CaC_2 . Reason: 1 mol of CaC_2 contains two moles of C.

2 Marks questions

11. State:

a. Law of definite proportionb. Law of Multiple proportion

- 12. Prove that sum of all mole fractions of a solution is unity?
- 13. Write empirical formula of following:

CO, Na₂CO₃, KCl, H₃PO₄, Fe₂O₃

- 14. An organic compound contains 144g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol⁻¹, calculate:
 - i. Empirical formula

- ii. Molecular formula
- 15. How many moles of ethane are required to produce 66 g CO_2 after combustion?
- 16. A solution is prepared by dissolving 150g of NaCl in 900 g of water. Calculate the mole fraction of each component.
- 17. How many moles of N₂ are required to produce 85g of NH₃? Calculate its mass.

<u>3 Marks</u>

- 18. What do you mean by limiting reagent?
 400 g of N₂ and 150 g of H₂ are mixed together to form NH₃. Identify the limiting reagent and calculate the amount of NH₃ produced.
- 19. Explain the following:
 - a. Mole fraction
 - b. Molarity
 - c. Molality
- 20. The density of 2M solution of NaCl is 1.25 g ml⁻¹. Calculate molality of the solution.
- 21. Identify the limiting reagent if 0.6g of magnesium is added to 100 ml solution of 0.4M hydrochloric acid. Also Calculate the mass of hydrogen gas produced. (Mg = 24u)
- 22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol. What is its molecular formula?

<u>5 Marks</u>

- 23. a. Commercially available con HCl is in an aqueous solution containing 40% HCl gas by mass. If its density is 1.2 gcm⁻³, calculate the molarity of HCl solution.
 - b. Empirical formula of a gaseous compound is $CH_2Cl. 0.12$ g of the compound occupies a volume of 37.20cc at 105 degree centigrade and 760 mm Hg. Find the molecular formula of the compound.
 - c. State Avogadro law.

Answers

- 1. a
- 2. b
- 3. c
- 4. 24.088×10^{23} atoms
- 5. simple whole number ratio

6. b

7. a

8. a

9. d

10. b

- 11. a. A given compound always contains exactly the same proportion of elements by weight.
 - b. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

12.

Mole fraction of A in solution $(x_A) = rac{n_A}{n_A + n_B}$ Mole fraction of B in solution $(xa) = rac{n_B}{n_A + n_B}$

So,

$$x_A+x_B=rac{n_A+n_B}{n_A+n_B}=1$$

13. CO – CO

$$\label{eq:alpha} \begin{split} &Na_2CO_3 - Na_2CO_3\\ &KCl - KCl\\ &H_3PO_4 - H_3PO_4\\ &Fe_2O_3 - Fe_2O_3 \end{split}$$

14.

Element	Mass	Moles	Ratio	Simplest ratio
С	144	12	1	1
Н	12	12	1	1

Empirical formula = CH Empirical formula mass = 13 n = 78/13 = 6Molecular formula = C₆H₆

15. $C_2H_6 + 7/2 O_2 \rightarrow 2CO_2 + 3H_2O$

No: of moles of $CO_2 = 66/44 = 1.5$ moles

	C_2H_6	CO_2
As per eqn	1 mol	2 mol
As per qsn	?	1.5 mol

Ans: 0.75 moles of ethane.

16.

```
n_{NaCl} = 150 / 58.5 = 2.56
```

 $n_{H2O} = 900 / 18 = 50$

 $\chi_{NaCl} \!= \! 2.56 \, / \, 2.56 + 50 \! = \! 0.0487$

 $\chi_{H2O} = 50 / 52.56 = 0.951$

17. N₂ + 3H₂ \rightarrow 2NH₃

No: of moles of $NH_3 = 85/17 = 5$ moles

N₂ NH₃

As per eqn,	1 mol	2 mol
As per qsn,	?	5 moles

Therefore no: of moles of $N_2 = 2.5$ moles

18. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent.

 $N_2 + 3H_2 \rightarrow 2NH_3$

No: of moles of $N_2 = 400/28 = 14.28$ mol

No: of moles of $H_2 = 150 / 2 = 75$ mol

	N_2	H_2
As per eqn.	1	3
As per qsn,	14.28	?

No: of moles of H_2 required for 14.28 moles of $N_2 = 42.84$ mol Therefore, H_2 is excess reagent i.e N_2 is limiting reagent.

	N_2	NH ₃
As per eqn.	1	2
As per qsn,	14.28	?

Therefore no: of moles of $NH_3 = 28.56$ mol Mass of $NH_3 = 28.56 \times 17 = 485.52$ g

19. a. Mole fraction : It is the ratio of number of moles of a particular component to the total number of moles of the solution.

Mole fraction of A $= \frac{\text{No. of moles of A}}{\text{No. of moles of solutions}}$ $= \frac{n_{\text{A}}}{n_{\text{A}} + n_{\text{B}}}$ Mole fraction of B $= \frac{\text{No. of moles of B}}{\text{No. of moles of solutions}}$ $= \frac{n_{\text{B}}}{n_{\text{A}} + n_{\text{B}}}$

b. Molarity : It is defined as the number of moles of the solute in 1 litre of the solution.

Molarity (M) = $\frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$

c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent.

 $Molality (m) = \frac{No. of moles of solute}{Mass of solvent in kg}$

20. Molarity = 2M

Assume volume of solution = 1 LTherefore, No of moles of NaCl = 2 mol

Mass of NaCl = $2 \times 58.5 = 117$ g

Mass of 1 L of solution = $1.25 \text{ gml}^{-1} \times 1000 \text{g} = 1250 \text{ g}$. (Since density = 1.25 gml^{-1} and density = mass / volume)

Mass of water = 1250 g -117 g = 1133 g Molality = No: of moles of solute/ Mass of solvent(kg) = 2/1.133= 1.765 molkg^{-1}

21. Moles of Mg = 0.6/24 = 0.025 mol Moles of HCl = Molarity × Volume = 0.4 M× 0.1= 0.04 mol

 $Mg + 2HCl \rightarrow MgCl_2 + H_2$

	Mg	HCl
As per eqn,	1	2
As per qsn,	0.025	?

No: of moles of HCl = 0.05 mol

HCl is the limiting reagent.

	HCl	H_2
As per eqn,	2	1
As per qsn,	0.04	?

Moles of $H_2 = 0.02$ mol Mass of HCl = 0.02×36.5 = 0.73 g

22.

Moles of C = 49.48/12 = 4.12 mol Moles of H = 5.19/1 = 5.19 mol Moles of O = 16.48/16 = 1.03 mol Moles of N = 28.85/14 = 2.06 mol

Empirical formula = $C_4H_5N_2O$ Molecular formula = $C_8H_{10}N_4O_2$

```
23. a. Total mass of solution = 100 g
Mass of HCl = 40g
```

Moles of HCl = 40/36.5 = 1.09 mol Density of solution = m/v 1.2 = 100/ V Vol of solution = 83.3 ml

```
Molarity = moles of HCl / Vol of solution in L
= 1.09/0.0833
= 13.08 \text{ M}
b.
pV = nRT
p = 760 mm Hg = 1 atm
V = 37.2 \text{ cm}^3 = 0.0372 \text{ L}
```

 $R = 0.082 \text{ atm } LK^{-1} \text{mol}^{-1}$

T = 378 K

$$\label{eq:n} \begin{split} n &= 0.0012 \mbox{ mol} \\ n &= m \mbox{ / } MM \\ 0.0012 &= 0.12 \mbox{ / } MM \\ Molar \mbox{ mass} &= 100 \mbox{ g mol}^{-1} \end{split}$$

Molar mass / Empirical formula mass = 100/49.5 = 2

Molecular formula = $C_2H_4Cl_2$

c. Equal volumes of all gases at the same temperature and pressure should contain equal number of molecules.

Prepared by Jasmin Joseph	Checked by : HOD- SCIENCE