INDIAN SCHOOL AL WADI AL KABIR

Class: XI	Department: SCIENCE - 2020 - 2021 SUBJECT $:$ CHEMISTRY	Date of submission:
Worksheet No: 03 WITH ANSWERS	Chapter: SOME BASIC CONCEPTS OF CHEMISTRY	A4 FILE FORMAT
NAME OF THE STUDENT	CLASS \& SEC:	Note:

1. What is the mass percent of C in Glucose?
a. 40%
b. 0.04%
c. 7.2%
d. 18%
2. Which of the following statements indicates that law of multiple proportion is being followed.
a. Sample of water taken from any source will always have hydrogen and oxygen in the ratio 2:1.
b. Carbon forms two oxides namely CO_{2} and CO , where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1.
c. A 10 g ribbon of Mg burns in oxygen and the entire magnesium converts to its oxide.
d. When two elements combine with a fixed mass of the third element, the ratio in which they do so is simple whole number ratio.
3. Match the items in Column I and II.

Column I Physical quantity	Column II Unit
i. Molarity	a. gml $^{-1}$
ii. Mole fraction	b. Mol
iii. Mole	c. molkg $^{-1}$
iv. Molality	d. Unitless
	e. molL $^{-1}$

a. $\mathrm{i}-\mathrm{a}, \mathrm{ii}-\mathrm{e}, \mathrm{iii}-\mathrm{b}, \mathrm{iv}-\mathrm{c}$
b. $\mathrm{i}-\mathrm{b}, \mathrm{ii}-\mathrm{e}, \mathrm{iii}-\mathrm{d}, \mathrm{iv}-\mathrm{c}$
c. $i-e, i i-d, i i i-b, i v-c$
d. $\mathrm{i}-\mathrm{e}, \mathrm{ii}-\mathrm{a}, \mathrm{iii}-\mathrm{b}, \mathrm{iv}-\mathrm{c}$
4. One mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains \qquad atoms of oxygen.
5. Under similar conditions, the ratio by volumes of gaseous reactants and gaseous products is \qquad
6. Which of the following compounds has same empirical formula as that of glucose?
a. $\mathrm{CH}_{3} \mathrm{CHO}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{C}_{2} \mathrm{H}_{6}$
7. Which has maximum number of atoms?
a. 24 g of C
b. 56 g of Fe
c. 27 g of Al
d. 108 g of Ag
8. The modern atomic weight scale is based on
a. ${ }^{12} \mathrm{C}$
b. ${ }^{16} \mathrm{O}$
c. ${ }^{1} \mathrm{H}$
d. ${ }^{13} \mathrm{C}$

Questions 9-10 are Assertion Reason type questions

a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
c. If Assertion is correct and Reason is wrong.
d. If Assertion is wrong and Reason is correct.
9. Assertion: 1 g atom of Sulphur contains Avogadro number of molecules.

Reason: Atomicity of S is eight.
10. Assertion: The formula of Calcium carbide is CaC_{2}.

Reason: 1 mol of CaC_{2} contains two moles of C .

2 Marks questions

11. State:
a. Law of definite proportion
b. Law of Multiple proportion
12. Prove that sum of all mole fractions of a solution is unity?
13. Write empirical formula of following:

$$
\mathrm{CO}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KCl}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

14. An organic compound contains 144 g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol^{-1}, calculate:
i. Empirical formula
ii. Molecular formula
15. How many moles of ethane are required to produce $66 \mathrm{~g} \mathrm{CO}_{2}$ after combustion?
16. A solution is prepared by dissolving 150 g of NaCl in 900 g of water. Calculate the mole fraction of each component.
17. How many moles of N_{2} are required to produce 85 g of NH_{3} ? Calculate its mass.

3 Marks

18. What do you mean by limiting reagent?

400 g of N_{2} and 150 g of H_{2} are mixed together to form NH_{3}. Identify the limiting reagent and calculate the amount of NH_{3} produced.
19. Explain the following:
a. Mole fraction
b. Molarity
c. Molality
20. The density of 2 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution.
21. Identify the limiting reagent if 0.6 g of magnesium is added to 100 ml solution of 0.4 M hydrochloric acid. Also Calculate the mass of hydrogen gas produced.

$$
(\mathrm{Mg}=24 \mathrm{u})
$$

22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is $194.19 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

5 Marks

23. a. Commercially available con HCl is in an aqueous solution containing $40 \% \mathrm{HCl}$ gas by mass. If its density is $1.2 \mathrm{gcm}^{-3}$, calculate the molarity of HCl solution.
b. Empirical formula of a gaseous compound is $\mathrm{CH}_{2} \mathrm{Cl} .0 .12 \mathrm{~g}$ of the compound occupies a volume of 37.20 cc at 105 degree centigrade and 760 mm Hg . Find the molecular formula of the compound.
c. State Avogadro law.

Answers

1. a
2. b
3. c
4. 24.088×10^{23} atoms
5. simple whole number ratio
6. b
7. a
8. a
9. d
10. b
11. a. A given compound always contains exactly the same proportion of elements by weight.
b. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.
12.

Mole fraction of A in solution $\left(x_{A}\right)=\frac{n_{A}}{n_{A}+n_{B}}$
Mole fraction of B in solution $(x a)=\frac{n_{B}}{n_{A}+n_{B}}$
So,
$x_{A}+x_{B}=\frac{n_{A}+n_{B}}{n_{A}+n_{B}}=1$
13. $\mathrm{CO}-\mathrm{CO}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{KCl}-\mathrm{KCl}$
$\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{O}_{3}$
14.

Element	Mass	Moles	Ratio	Simplest ratio
C	144	12	1	1
H	12	12	1	1

Empirical formula $=\mathrm{CH}$
Empirical formula mass $=13$
n $=78 / 13=6$
Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$
15. $\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

No: of moles of $\mathrm{CO}_{2}=66 / 44=1.5$ moles

	$\mathrm{C}_{2} \mathrm{H}_{6}$	CO_{2}
As per eqn	1 mol	2 mol
As per qsn	$?$	1.5 mol

Ans: 0.75 moles of ethane.
16.
$\mathrm{n}_{\mathrm{NaCl}}=150 / 58.5=2.56$
$\mathrm{n}_{\text {H2O }}=900 / 18=50$
$\chi_{\mathrm{NaCl}}=2.56 / 2.56+50=0.0487$
$\chi_{\text {н2о }}=50 / 52.56=0.951$
17. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

No: of moles of $\mathrm{NH}_{3}=85 / 17=5$ moles
$\mathrm{N}_{2} \quad \mathrm{NH}_{3}$

As per eqn, $1 \mathrm{~mol} \quad 2 \mathrm{~mol}$
As per qsn, ? 5 moles

Therefore no: of moles of $\mathrm{N}_{2}=2.5$ moles
18. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent.
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

No: of moles of $\mathrm{N}_{2}=400 / 28=14.28 \mathrm{~mol}$
No: of moles of $\mathrm{H}_{2}=150 / 2=75 \mathrm{~mol}$

	N_{2}	H_{2}
As per eqn.	1	3
As per qsn,	14.28	$?$

No: of moles of H_{2} required for 14.28 moles of $\mathrm{N}_{2}=42.84 \mathrm{~mol}$ Therefore, H_{2} is excess reagent i.e N_{2} is limiting reagent.

	N_{2}	NH_{3}
As per eqn.	1	2
As per qsn,	14.28	$?$

Therefore no: of moles of $\mathrm{NH}_{3}=28.56 \mathrm{~mol}$
Mass of $\mathrm{NH}_{3}=28.56 \times 17=485.52 \mathrm{~g}$
19. a. Mole fraction : It is the ratio of number of moles of a particular component to the total number of moles of the solution.

Mole fraction of A

$=\frac{\text { No. of moles of A }}{\text { No.of moles of solutions }}$
$=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}$
Mole fraction of B
$=\frac{\text { No. of moles of B }}{\text { No.of moles of solutions }}$

$$
=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}
$$

b. Molarity : It is defined as the number of moles of the solute in 1 litre of the solution.

$$
\text { Molarity }(\mathrm{M})=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}
$$

c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent.

$$
\text { Molality }(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in kg }}
$$

20. Molarity $=2 \mathrm{M}$

Assume volume of solution $=1 \mathrm{~L}$
Therefore, No of moles of $\mathrm{NaCl}=2 \mathrm{~mol}$
Mass of $\mathrm{NaCl}=2 \times 58.5=117 \mathrm{~g}$
Mass of 1 L of solution $=1.25 \mathrm{gml}^{-1} \times 1000 \mathrm{~g}=1250 \mathrm{~g}$.
(Since density $=1.25 \mathrm{gml}^{-1}$ and density $=$ mass $/$ volume)
$\begin{aligned} \text { Mass of water } & =1250 \mathrm{~g} \mathrm{-117g} \\ & =1133 \mathrm{~g}\end{aligned}$
Molality = No: of moles of solute/ Mass of solvent(kg)

$$
\begin{aligned}
& =2 / 1.133 \\
& =1.765 \mathrm{molkg}^{-1}
\end{aligned}
$$

21. Moles of $\mathrm{Mg}=0.6 / 24=0.025 \mathrm{~mol}$

Moles of $\mathrm{HCl}=$ Molarity \times Volume

$$
\begin{aligned}
& =0.4 \mathrm{M} \times 0.1 \\
& =0.04 \mathrm{~mol}
\end{aligned}
$$

$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

	Mg
As per eqn,	1
HCl	
As per qsn,	0.025

No: of moles of $\mathrm{HCl}=0.05 \mathrm{~mol}$

HCl is the limiting reagent.

As per eqn,
As per qsn,
$\mathrm{HCl} \quad \mathrm{H}_{2}$
2
1
0.04

?

Moles of $\mathrm{H}_{2}=0.02 \mathrm{~mol}$
Mass of $\mathrm{HCl}=0.02 \times 36.5$

$$
=0.73 \mathrm{~g}
$$

22.

Moles of $\mathrm{C}=49.48 / 12=4.12 \mathrm{~mol}$
Moles of $\mathrm{H}=5.19 / 1 \quad=5.19 \mathrm{~mol}$
Moles of $\mathrm{O}=16.48 / 16=1.03 \mathrm{~mol}$
Moles of $\mathrm{N}=28.85 / 14=2.06 \mathrm{~mol}$
Empirical formula $=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
Molecular formula $=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
23. a. Total mass of solution $=100 \mathrm{~g}$

Mass of $\mathrm{HCl}=40 \mathrm{~g}$
Moles of $\mathrm{HCl}=40 / 36.5=1.09 \mathrm{~mol}$
Density of solution $=\mathrm{m} / \mathrm{v}$
$1.2=100 / \mathrm{V}$
Vol of solution $=83.3 \mathrm{ml}$

Molarity = moles of $\mathrm{HCl} / \mathrm{Vol}$ of solution in L
= 1.09/0.0833
$=13.08 \mathrm{M}$
b.
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{p}=760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$
$\mathrm{V}=37.2 \mathrm{~cm}^{3}=0.0372 \mathrm{~L}$
$\mathrm{R}=0.082 \mathrm{~atm} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=378 \mathrm{~K}$
$\mathrm{n}=0.0012 \mathrm{~mol}$
$\mathrm{n}=\mathrm{m} / \mathrm{MM}$
$0.0012=0.12 / \mathrm{MM}$
Molar mass $=100 \mathrm{~g} \mathrm{~mol}^{-1}$

Molar mass $/$ Empirical formula mass $=100 / 49.5=2$
Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
c. Equal volumes of all gases at the same temperature and pressure should contain equal number of molecules.

