

Q.8.	If the adjacent angles of a parallelogram are equal, then the parallelogram is a					
Q	A	Rectangle	B	C	D	
Q.9.	A parallelogram with all sides equal is called					
	A		B	C	D	Rhombus
Q. 10	In a quadrilateral $K L M N, \angle K=115^{\circ}, \angle L=65^{\circ}, \angle M=115^{\circ}$, and $\angle N=65^{\circ}$, identify the type of quadrilateral					
	A	Parallelogram	B	C	D	
Fill in the blanks(1mark)						
Q11.	If PQRS is a parallelogram, $\angle P=105^{\circ}$, then the measure of $\angle Q$ is 75°					
Q12.	A rectangle is a CONVEX quadrilateral.					
Q13.	The adjacent sides of a rhombus are 18 units and $3 x$ units. Then the value of x is \qquad The adjacent sides of a rhombus are qual$\begin{gathered} 3 x=18 \\ X=18 / 3=6 \end{gathered}$					
Q14.	In a rhombus, diagonals intersect at RIGHT angles.					
Q15.	SQUARE is a regular quadrilateral.					
SECTION B (2 marks)						
Q16.	$A B C D$ is a rectangle whose diagonals are $(2 x+6) \mathrm{cm}$ and $(3 x+4) \mathrm{cm}$. Find the value of x and also find the length of the diagonal. Diagonals of a rectangle are equal $\begin{aligned} & 2 x+6=3 x+4 \\ & X=2 \end{aligned}$ Therefore, lengths of diagonals are $2 \times 2+6=10 \mathrm{~cm}$ each					

Q17.	Explain how this figure is a trapezium. Which of its two sides are parallel? $\angle P+\angle Q=135^{\circ}+45^{\circ}=180^{\circ}$ (One set of co-interior angles are supplementary) Therefore, $P Q$ is parallel to $R S$ If one pair of opposite sides are parallel, then that figure is a trapezium.
Q18.	Find the value of x and y from the given parallelogram. Diagonals of a parallelogram bisect each other. $\begin{aligned} & Y+7=18 \\ & Y=18-7=11 \\ & X+y=22 \\ & X+11=22 \\ & X=22-11=11 \end{aligned}$
Q19.	Find the value of $m \angle L$, if $K L$ is parallel to $M N$ if $K L$ is parallel to $M N, \angle L+\angle M=180^{\circ}$ (co-interior angles are supplementary) $\begin{aligned} & \angle \mathrm{L}+50^{\circ}=180^{\circ} \\ & \angle \mathrm{L}=180^{\circ}-50^{\circ}=130^{\circ} \end{aligned}$
Q20.	From the fig. find the value of OL if $\mathrm{OE}=4$ and HL is 6 more than PE . Given figure PHEL is a parallelogram. if $\mathrm{OE}=4, \mathrm{HL}=6$ more than $\mathrm{PE}=6+\mathrm{PE}$ But PE $=2 \times 4=8$ $\mathrm{HL}=6+8=14$ Diagonals of a parallelogram bisect each other. $\mathrm{OL}=14 / 2=7 \mathrm{~cm}$
	SECTION C (4marks)
Q21.	Lengths of two sides of a parallelogram are in the ratio of 2: 3. Find the sides of the parallelogram if its perimeter is 120 cm . Let the length of sides are $2 x$ and $3 x$ $\begin{aligned} & 2 x+3 x+2 x+3 x=120 \text { (perimeter) } \\ & 10 x=120 \\ & X=120 / 10=12 \end{aligned}$ Therefore, its sides are $2 \mathrm{x}=2 \times 12=24,3 \mathrm{x}=3 \times 12=36$ Since opposite sides are Equal, Sides are $24 \mathrm{~cm}, 36 \mathrm{~cm}, 24 \mathrm{~cm}$ and 36 cm

Q22.	Find the value of x, y and z from the given rhombus. $\mathrm{X}=90^{\circ}$ (Vertically opposite angles are equal) $\begin{aligned} & 90^{\circ}+35^{\circ}+y=180^{\circ} \quad \text { (Angle sum property of a triangle) } \\ & 125^{\circ}+y=180^{\circ} \\ & y=180^{\circ}-125^{\circ}=55^{\circ} \\ & z=55^{\circ} \text { (alternate interior angles are equal) } \end{aligned}$	
Q23.	Find the value of x, y and z from the given parallelogram. $\begin{aligned} & y=85^{\circ} \text { (opposite angles are equal) } \\ & z=85^{\circ} \quad(\text { corresponding angles are equal }) \\ & 85^{\circ}+x=180^{\circ} \text { (co-interior angles are supplementary) } \\ & X=180^{\circ}-85^{\circ}=95^{\circ} \end{aligned}$	
Q24.	Find the value of x, y and z from the given parallelogram $\begin{aligned} & 80^{\circ}+\mathrm{a}=180^{\circ} \text { (linear pair) } \\ & \mathrm{a}=180^{\circ}-80^{\circ}=100^{\circ} \\ & 45^{\circ}+\mathrm{z}+\mathrm{a}=180^{\circ} \text { (co-interior angles are supplementary) } \\ & 45^{\circ}+\mathrm{z}+100^{\circ}=180^{\circ} \\ & \mathrm{z}+145^{\circ}=180^{\circ} \\ & \mathrm{z}=180^{\circ}-145^{\circ}=35^{\circ} \\ & y=45^{\circ} \text { (alternate interior angles are equal) } \end{aligned}$	
Q25.	In a trapezium $A B C D, A B$ is parallel to $C D, \angle A: \angle D=7: 2$ and $: \angle C=4: 5$. Find the angles of the trapezium. $\angle A=7 x, \quad \angle D=2 x, \angle B=4 x, \angle C=5 x$ $A B$ is parallel to $C D$ $\begin{aligned} & 7 \mathrm{x}+2 \mathrm{x}=180^{\circ}(\text { co-interior angles are supplementary }) \\ & 9 \mathrm{x}=180^{\circ} \\ & \mathrm{X}=180 / 9=20^{\circ} \\ & \angle \mathrm{A}=7 \mathrm{x}=7 \times 20^{\circ}=140^{\circ} \\ & \angle B=4 \mathrm{x}=4 \times 20^{\circ}=80^{\circ} \\ & \angle C=5 \mathrm{x}=5 \times 20^{\circ}=100^{\circ} \\ & \angle D=2 \mathrm{x}=2 \times 20^{\circ}=40^{\circ} \end{aligned}$	$\angle B$

