

Q.8.	For some positive integers \boldsymbol{a} and 3, there exists unique integers q and r such that $\boldsymbol{a}=3 \mathrm{q}+\mathrm{r}$, where r must satisfy:							
	A	$0 \leq \mathrm{r}<3$	B	$1<r<3$	C	$0<r<3$	D	$0<r \leq 3$
Q.9.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , the other number is:							
	A	720	B	648	C	1800	D	72
Q.10.	If $2 x+3 y=0$ and $4 x-3 y=0$, then $x+y$ equals:							
	A	0	B	-1	C	1	D	2
Q.11.	Solve for x and y :$\begin{aligned} & x+\frac{6}{y}=6 \\ & 3 x-\frac{8}{y}=5 \end{aligned}$							
	A	$\mathrm{x}=2, \mathrm{y}=3$	B	$x=-2, y=-3$	C	$x=3, y=2$	D	$x=-3, y=-2$
Q.12.	The HCF of 576 and 252 is:							
	A	27	B	36	C	72	D	18
Q.13.	The number of places of decimals after which the decimal expansion of $\frac{17}{8}$ will terminate is:							
	A	1	B	2	C	3	D	will not terminate
Q.14.	The sum of exponents of prime factors in the prime factorization of 250 is:							
	A	1	B	4	C	5	D	3
Q.15.	There is a circular path around a sports field. Komal takes 32 minutes to drive one round of the field while Indu takes 24 minutes for the same. Suppose they both start at the same point and go in the same direction, they will meet again at the starting point after:							
	A	48 minutes	B	96 minutes	C	8 minutes	D	240 minutes
Q.16.	$5 \sqrt{y}$ is an irrational number if y is:							
	A	5	B	36	C	25	D	121

Q.17. \quad The HCF of 55 and 99 is expressible in the form $55 \mathrm{~m}-99$, then the value of m is:

| | A | 11 | B | 2 | C | 0 | D | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q.18. | The pair of equations $\mathrm{ax}+2 \mathrm{y}=7$ and $3 \mathrm{x}+\mathrm{by}=16$ represents parallel lines if: | | | | | | | |
| | A | $\mathrm{a}=\mathrm{b}$ | B | $3 \mathrm{a}=2 \mathrm{~b}$ | C | $2 \mathrm{a}=3 \mathrm{~b}$ | D | $\mathrm{ab}=6$ |
| Q.19. | The rational number which has a a non-terminatig recurring decimal expansion is: | | | | | | | |
| | A | $\frac{7005}{64}$ | B | $\frac{41}{30}$ | C | $\frac{84}{40}$ | D | $\frac{3985}{625}$ |

Q.20. If two positive integers p and q can be expressed as $\mathrm{p}=a^{3} b^{2}$ and $\mathrm{q}=a b^{3} c^{2} ; \mathrm{a}, \mathrm{b}, \mathrm{c}$ being prime numbers, then $\operatorname{HCF}(p, q)$ is:

	A	abc	B	$\mathrm{a} b^{2}$	C	$a^{3} b^{3} c^{2}$	D	$a^{2} b^{2} c^{2}$
Q.21.	The pair of equations $\mathrm{y}=0$ and $\mathrm{y}=-7$ has:							
	A	one solution	B	two solutions	C	infinitely many solutions	D	no solutions
Q.22.	Given that $\operatorname{LCM}(91,26)=182$, then $\operatorname{HCF}(91,26)$ is:							
	A	13	B	26	C	17	D	9
Q.23.	Alexandra finds that she can give 3 haircuts and 2 hair dyes in 315 minutes. Giving 2 haircuts and 4 hair dyes takes 450 minutes. The system of equations representing the situation is:							
	A	$\begin{aligned} & 3 x+2 y=315 \\ & 2 x+4 y=450 \end{aligned}$	B	$\begin{aligned} & 3 x+2 y=450 \\ & 2 x+4 y=315 \end{aligned}$	C	$\begin{aligned} & 2 x+2 y=315 \\ & 3 x+4 y=450 \end{aligned}$	D	$\begin{aligned} & 3 x+4 y=315 \\ & 2 x+3 y=450 \end{aligned}$

Q.24. If n is a natural number, then exactly one of the numbers $n, n+2$ and $n+4$ is a multiple of:

| A | B | 3 | C | 5 | D | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Q.25. If the lines given by $3 x+2 k y=2$ and $2 x+5 y+1=0$ are parallel, then the value of k is:
A $\frac{-5}{4}$
B
$\frac{2}{5}$
C $\frac{15}{4}$
D $\quad \frac{3}{2}$
Q.26. Five years hence the age of Jacob will be 3 times that of his son. Five years ago, Jacob's age was seven times that of his son. What is the present age of Jacob?

A	30 years	B	40 years	C	10 years	D	35 years

Q.27. The pair of equations $x+2 y+5=0$ and $-3 x-6 y+1=0$ has:
A unique solution

B	exactly two
solutions	

C $\begin{aligned} & \text { infinitely many } \\ & \text { solutions }\end{aligned}$
D \quad no solution
Q.28. Which of the numbers always ends with digit 6?

A	2^{n}	B	4^{n}	C	6^{n}	D	8^{n}

Q.29. The HCF \times LCM for the numbers 50 and 20 is:
A
B
C
1000
D
50
Q.30. The value of k for which the equations $3 x-y+8=0$ and $6 x-k y=-16$ represent coincident lines is:

\mathbf{A}	$\frac{1}{2}$	B	$\frac{-1}{2}$	C	2	\mathbf{D}	-2

Answers								
4 3 3 4	1	C	2	B	3.	B	4	D
	5	A	6	C	7	A	8	A
	9	D	10	A	11	C	12	B
	13	C	14	B	15	B	16	A
	17	B	18	D	19	B	20	B
	21	D	22	A	23	A	24	B
	25	C	26	B	27	D	28	C
	29	C	30	C				

