

INDIAN SCHOOL AL WADI AL KABIR

Class: XII	Department: SCIENCE 2020-2021 SUBJECT : PHYSICS	Date of submission: Worksheet No: 2
CHAPTER-2 - ELECTRIC POTENTIAL	10.05 .2020	

QUESTIONS BASED ON BOARD PAPERS
 SECTION A

Directions (Q1-Q5) Select the most appropriate option from those given below each question
[1] When charge is supplied to a conductor, its potential depends upon
[a] amount of charge [b] geometry and size of the conductor [.c] both [a]\&[b] [d]only on [a]
[2] The variation of potential V with r \& electric field with r for a point charge is correctly shown in the graphs

[a]

b]

[c]

[d]
[3] A dipole is placed parallel to electric field .If W is the workdone in rotating the dipole from 0^{0} to 60°, then work done in rotating it from o ${ }^{\circ}$ to 180° is
[a] 2W[b] 3W [c] 4W [d] $\frac{W}{2}$
[4] A parallel plate capacitor is charged by a battery . Once it is charged ,battery is removed. Now a dielectric material is inserted between the plates of the capacitor, which of the following does not change?
[a] Electric field[b] potential difference [c.] charge on the plates[d] energy stored
[5] The potential at the centre of the square is

[a] zero [b] 2kq [c] $\frac{k q}{a^{2}}$ [d] $\frac{k q}{2 a^{2}}$

KEY

[1]c [2] b[3] c[4]c [5]a

SECTION B[2 marks]

[6]A neutral hydrogen molecule has two protons and two electrons. If one of the electrons is removed, we get a hydrogen molecule ion $\left(\mathrm{H}_{2}\right)$. In the ground state of H_{2} the protons are separated by roughly $1.5 \mathrm{~A}^{\circ}$ and the electron is roughly $1 \mathrm{~A}^{\circ}$ from each proton.
Estimate the potential energy of the system.
$\mathrm{U}=\frac{K q 1 q 2}{r 12}+\frac{k q 2 q 3}{r 23}+\frac{k q 3 q 1}{r 31}=-19.2 \mathrm{eV}$
[7]The electric field intensity at a point due to a point charge is $20 \mathrm{~N} / \mathrm{C}$ and the electric potential is $10 \mathrm{~J} / \mathrm{C}$. Find the magnitude of the charge and distance of the point from charge.
$\mathrm{V}=\frac{K Q}{r}, \mathrm{E}=\mathrm{V} / \mathrm{d}$
$\mathrm{Q}=0.55 \times 10^{-9} \mathrm{C}$
[8]A capacitor with air between the plates has a capacitance of 8 F .The separation between the plates is now reduced by half and the space between them is filled with a medium of dielectric constant 5.Calculate the value of the capacitance of the capacitor in second case.
$\mathrm{C}=\frac{\epsilon o A}{d}$
$\mathrm{C}^{1}=\epsilon r \frac{\epsilon O A}{\frac{d}{2}}$
$\mathrm{C}^{1}=80 \mathrm{~F}$

SECTION C[3 marks]

[9] A $4 \mu \mathrm{~F}$ capacitor is charged by a 200 v supply.It is then disconnected from the supply and is connected to another $2 \mu \mathrm{~F}$ capacitor. How much energy of the first capacitor is lost in the form of radiation?
$\mathrm{E} 1=1 / 2 \mathrm{C} 1 \mathrm{~V} 1^{2}$
$\mathrm{E} 2=1 / 2 \mathrm{C}_{\mathrm{p}} \mathrm{V}^{2}$
Energy lost $=\mathrm{E} 1-\mathrm{E} 2=2.67 \times 10^{-2} \mathrm{~J}$
[10]Derive the expression for capacitance of a parallel plate capacitor [11] Derive the expression for energy stored in a capacitor

SECTION D [5 marks]

[12][a]Define electrostatic potential energy[b] Derive the expression for electrostatic potential energy of a system of 3 charges q1, q2 and q3
[13]What is an electric dipole. Derive an expression for electrostatic potential energy of an electric dipole in an external electric field of strength E

PREPARED BY : MR.WILLIAM

