

INDIAN SCHOOL AL WADI AL KABIR

PO 513, PC 117, WADI KABIR, SULTANATE OF OMAN Department of Mathematics, 2020-2021

CLASS: XII Worksheet- Relations Functions-Part- 2 25-03-2020

 $If f(x) = \begin{cases} 2x, & x > 3\\ x^2, 1 \le x \le 3, \text{ then f(-1) + f(2) + f(4) is}\\ 3x, & x < 1 \end{cases}$ Q.1. В C D 27 12 The range of the function $f(x) = \frac{|x-1|}{x-1}$, $x \ne 1$ *is* Q.2. Α $\{1, -1\}$ C [-1, 1]D None of these Q.3. Let $f: R \to R: f(x) = (3 - x^3)^{\frac{1}{3}}$, then fof (x) is $x^{\frac{1}{3}}$ X^3 \mathcal{C} Α $3x^3$ Х В D The number of all one-one functions from set $A = \{1,2,3,4\}$ to itself is Q.4. Α 4 В C 24 D 16 27 If $f: R \to R$ is defined by f(x) = 5x + 3, then f is Q.5. neither one-one g (y)= $\frac{4y}{3-4y}$ C many one onto D one-one onto nor onto If $f: R \to R$ is defined by $f(x) = [x], \forall x \in R$, then f is Q.6. Neither one-one One-one but not C D One-one onto many one onto nor onto onto If f(x) be a greatest integer function and g(x) be an absolute value function, then the Q.7. value of $fog\left(-\frac{3}{2}\right) + gof\left(\frac{4}{3}\right)$ is C -2 D 1 If $f: R \to R$ is defined by $f(x) = \begin{cases} -1, & \text{if } x \text{ is irrational} \\ 1, & \text{if } x \text{ is rational} \end{cases}$, then $f \circ f(\sqrt{2})$ is Q.8. C $\sqrt{2}$ 0 В -1 D Α 1

Q.9.		Let $f: \mathbf{R} - \left\{-\frac{4}{3}\right\} \to \mathbf{R}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Then $f^{-1}: Range f \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$ given by									
	Α	$g(y) = \frac{3y}{3-4y}$	В	g (y)= $\frac{4y}{4-3y}$	С	g (y)= $\frac{4y}{3-4y}$	D	$g(y) = \frac{3y}{4-3y}$			
Q.10	Let $f : \mathbf{R} - \{-3\} \to \mathbf{R} - \{1\}$ be a function defined as $f(x) = \frac{x-2}{x-3}$. Then f is										
	Α	injective	В	surjective	С	bijective	D	None of these			
Q11.	If f	If $f(x) = 3x + 2$, then $f \circ f =$									
Q12.	Le	Let $f: N \to S$, where S is range of f, such that $f(x) = 4x^2 + 12x + 15$, then $f^{-1}(31) =$									
Q13.	Le	Let $f: N \to Y$: $f(x) = x^2$, where $Y = \{n^2 : n \in N\}$, then $f^{-1}(x) = \dots$									
Q14.		If f and g are two functions from R to R defined as $f(x) = x + x$ and $g(x) = x - x$, then $fog(x)$ for $x < 0$ is									
Q15.	If	If $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(1,3), (2,3), (5,1)\}$, then $g \circ f = \dots$									
Q16.		Show that the function f: $R \rightarrow R$ defined by $f(x) = \frac{2x-1}{3}$, $x \in R$ is one –one and onto function. Also find the inverse of the function f.									
Q17.		If $f(x) = \frac{3x+2}{2x-3}$, $x \neq \frac{3}{2}$, find fof.									
Q18.		Consider the function $f: R_+ \to [4, \infty[$ defined by $f(x) = x^2 + 4$, where R_+ is the set of all non negative real numbers. Show that f is invertible. Also find the inverse of f.									
Q19.	f($f(x) = 8x^3$, $g(x) = 2x^{\frac{1}{3}}$. Then find fogand gof									
Q20.	If	If $f: R \to R$ and $f(x) = 4 - (x - 7)^3$, find $f^{-1}(x)$.									
Q21.	Le	Let $f: N \to N$ be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}$ Find whether the function is bijective.									
Q22.		Let $f: N \to S$, where S is range of f, such that $f(x) = 4x^2 + 12x + 15$. Show that f is invertible and hence find f^{-1} .									
Q23.	x €	Let $A = \{-1, 0, 1, 2\}$, $B = \{-4, -2, 0, 2\}$ and $f, g : A \to B$ be functions defined by $f(x) = x^2 - x$, $x \in A$									
	ar	and $g(x) = 2\left x - \frac{1}{2}\right $ – 1, $x \in A$. Find gof and hence show that $f = g = gof$									
Q24.		Let the function $f: [0, \infty) \to R$ be a function defined by $f(x) = 9x^2 + 6x - 5$. Prove that f is not invertible. Modify, only the codomain of f to make f invertible and then find its inverse.									

Answers	1	В	2	A	3.	A	4	С
	5	D	6	В	7	С	8	D
	9	В	10	С	11	9x + 8	12	1
	1 3	\sqrt{x}	14	4x	15	{(1,3),(3,1),(4,3)	16	$\frac{3y+1}{2}$
	1 7	Х	18	$\sqrt{y-4}$, $y \in [4, \infty]$	19	64x, 4x	20	$7 + (4 - x)^{\frac{1}{3}}$
	2 1	No	22	$\frac{\sqrt{y-6}-3}{2}$	23	$ \left\{ \begin{array}{l} (-1,2), (0,0), \\ (1,0), (2,2) \end{array} \right\} $	24	$\frac{\sqrt{y+6}-1}{3}$
