INDIAN SCHOOL AL WADI AL KABIR PO 513, PC 117, WADI KABIR, SULTANATE OF OMAN

Department of Mathematics, 2020-2021
CLASS: XII Worksheet- Relations Functions-Part 1
Q.1. For real numbers x and y define $x R y$ if and only if $x-y+\sqrt{2}$ is an irrational number. Then the relation R is
A
reflexive
B symmetric

D none of these
Q.2. The relation R in \boldsymbol{R} defined by $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$. Then R is

A \begin{tabular}{l}
Reflexive but not \\
symmetric

\quad B

Symmetric but not \\
symmetric

\quad C

reflexive but not \\
transitive

$~$ D

None of these \\
\hline
\end{tabular}

Q.3. If R be the relation in the set N given by $\mathrm{R}=\{(a, b): a=b-2, b>6\}$ then
A
$(2,4) \in R$
B
$(3,8) \epsilon R$
C
$(6,8) \in R$
D
$(8,7) \epsilon R$
Q.4. The number of all relations from set $A=\{1,2,3\}$ to itself is
A 3
B 9
C 81
D 512
Q.5. Let R be a relation on N defined by $x+2 y=8$. Domain of R is

A	$\{2,4,8\}$	B	$\{2,4,6\}$	C	$\{2,4,6,8\}$	D	$\{2,4,8,10\}$

Q.6. If R be the relation on set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ then R is

A	only reflexive	B	an equivalence relation	\mathbf{C}	only symmetric	\mathbf{D}	only transitive

Q.7. Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,2),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ then R is

A	reflexive but not transitive	B	symmetric and transitive	C	reflexive but not symmetric	D	None of these

Q.8. If Relation R in the set Z of all integers defined as $R=\{(x, y): x-y$ is an integer $\}$ then R is

A only a symmetric relation
B Symmetric and transitive

C	Reflexive and
transitive	

D an equivalence relation.

Q.9.	If $\mathrm{R}==\{(a, b): a=b\}$, then R is							
	A	only symmetric	B	Reflexive and symmetric	C	Symmetric and transitive	D	an equivalence relation
Q.10.	If $\mathrm{R}==\{(a, b): a \leq b, a, b$ are real numbers $\}$, then R is							
	A	reflexive and symmetric	B	reflexive and transitive	C	Symmetric and transitive	D	none of these
Q. 11	Let T be the set of all triangles in a plane with R a relation in T given by $\mathrm{R}=\{(T 1, T 2): T 1$ is isimiar to $T 2\}$. Show that R is an equivalence relation.							
Q12.	Let L be the set of all lines in a plane and R be the relation in L defined as $\mathrm{R}=\{(L 1, L 2): L 1 \perp L 2\}$. Show that R is symmetric but neither reflexive nor transitive.							
Q13	Determine whether the relation R defined on the set of \mathbf{R} of all real numbers as $\mathrm{R}=\{(a, b): a, b \in \boldsymbol{R}$ and $a-b+\sqrt{3}$ is the set of irrational numbers $\}$ is reflexive or symmetric or transitive. Why?							
Q14	Prove that the relation R on the set NXN defined by $(a, b) R(c, d)$, iff $a d=b c$, for all $(a, b),(c, d) \in N X N$ is an equivalence relation.							
Q15	Show that the relation R defined on set $A=\{0,1,2,3, \ldots .12\}$ $\mathrm{R}=\{(a, b):\|a-b\|$ is diivisible by $4 ; a, b \in A\}$ is an equivalence relation							
	1.	A	2.	D	3.	C	4.	D
	5.	B	6.	C	7.	B	8.	D
	9.	D	10	B	13.	only reflexive		

