

INDIAN SCHOOL AL WADI AL KABIR PO 513, PC 117, WADI KABIR, SULTANATE OF OMAN Department of Mathematics, 2020-2021

CLASS: XII Worksheet- Relations Functions-Part 1 23-03-2020

Q.1.	Fo:	For real numbers x and y define xRy if and only if x-y $+\sqrt{2}$ is an irrational number. Then the relation R is								
	Α	reflexive	В	symmetric	С	transitive	D	none of these		
Q.2.	Th	The relation R in R defined by R = $\{(a,b): a \le b^3\}$. Then R is								
	Α	Reflexive but not symmetric	В	Symmetric but not symmetric	С	reflexive but not transitive	D	None of these		
Q.3.	If F	If R be the relation in the set N given by R = $\{(a, b): a = b - 2, b > 6\}$ then								
	Α	$(2,4)\epsilon R$	В	(3,8) <i>∈</i> R	С	(6,8) <i>∈</i> R	D	$(8,7)\epsilon R$		
Q.4.	Th	The number of all relations from set $A = \{1, 2, 3\}$ to itself is								
	Α	3	В	9	С	81	D	512		
Q.5.	Let	Let R be a relation on N defined by $x+2y=8$. Domain of R is								
	Α	{2, 4, 8}	В	{2, 4, 6}	С	{2, 4, 6, 8}	D	{2, 4, 8, 10}		
Q.6.	If F	If R be the relation on set A = $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ then R is								
	Α	only reflexive	В	an equivalence relation	С	only symmetric	D	only transitive		
Q.7.	Let A = $\{1, 2, 3\}$ and consider the relation $R = \{(1, 2), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ then R is									
	A	reflexive but not transitive	В	symmetric and transitive	С	reflexive but not symmetric	D	None of these		
Q.8.	If Relation R in the set Z of all integers defined as $R = \{(x,y): x-y \text{ is an integer }\}$ then R is									
	A	only a symmetric relation	В	Symmetric and transitive	С	Reflexive and transitive	D	an equivalence relation.		

Q.9.	If R	If $R == \{(a, b): a = b\}$, then R is									
	Α	only symmetric	В	Reflexive and symmetric	С	Symmetric and transitive	D	an equivalence relation			
Q.10.	If R	If $R == \{(a,b): a \leq b, a, b \text{ are real numbers}\}$, then R is									
	Α	reflexive and symmetric	В	reflexive and transitive	С	Symmetric and transitive	D	none of these			
Q.11	Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T1, T2): T1 \text{ is isimiar to } T2\}$. Show that R is an equivalence relation.										
Q12.	Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L1, L2): L1 \perp L2\}$. Show that R is symmetric but neither reflexive nor transitive.										
Q13	Determine whether the relation R defined on the set of R of all real numbers as $R = \{(a,b): a,b \in \mathbf{R} \text{ and } a-b+\sqrt{3} \text{ is the set of irrational numbers}\}$ is reflexive or symmetric or transitive. Why?										
Q14	Prove that the relation R on the set NXN defined by $(a, b)R(c, d)$, iff ad = bc, for all (a, b) , $(c, d) \in NXN$ is an equivalence relation.										
Q15	Show that the relation R defined on set A = $\{0, 1, 2, 3, \dots 12\}$ R = $\{(a, b): a - b \text{ is diivisible by } 4; a, b \in A\}$ is an equivalence relation										
RS	1.	A	2.	D	3.	С	4.	D			
ANSWERS	5.	В	6.	С	7.	В	8.	D			
	9.	D	10	В	13.	only reflexive					
