

INDIAN SCHOOL AL WADI AL KABIR Holiday Homework

(Class:XI			Mathe	matics		1	2018	
Q.No	Questions							Ans	
1	Evaluate ($i^{25} + i^{-56} + i^{67}$)							1	
2	Find mean deviation about mean : 4,3,3,2,5,6,2,6,5,4							1.2	
3	Solve : $3(x+2) + 9 < 5x + 11$, if x is a natural number.							{2, 3, 4, }	
4	Reduce the following equation into normal form and slope intercept								
	form: $\sqrt{3x} = 4 + y$. (Ans: $x\cos\frac{11\pi}{6} + y\sin\frac{11\pi}{6} = 2; y = \sqrt{3}x - 4$)								
5	How many words can be formed from the letters of the word						2160,		
	DIRECTOR so that i) the vowels always come together ii) the vowels never come together.							18000	
6	A committee of 7 has to be formed from 9 boys and 4 girls. In how							504, 588	
	many ways can this be done when the committee consists of:								
	i) exactly 3 girls ii) atleast 3 girls								
7	Solve : $5x^2 + (2+5\sqrt{2}i)x + 2\sqrt{2}i = 0$							$-2\sqrt{2}$ i, $-\frac{2}{5}$	
8	Find the square root of 3+4i						$\pm(2+i)$		
9	Find mean deviation about the median:							1.92	
	X	5	7	8	11	12	15		
	f	3	5	9	4	2	2		
10	In the binomial expansion of $(2x^2 - \frac{3}{2})^{11}$ find i) the coefficient of							$(i)11 2^{7}2^{4}$	
	x^{10} ii) the middle terms.							$(i) T_{6}^{2} and T_{7}$	
11	Find the equations of any two medians of the triangle formed by the li							$\left(\frac{4}{2}\frac{4}{2}\right)$	
	x - 3y + 7 = 0; $3x + 4y - 5 = 0$ and $4x + y - 11 = 0$. Find also the centroi							(3,37	
	the triangle.								

12	Prove: $(1 + \cos\frac{\pi}{8})(1 + \cos\frac{3\pi}{8})(1 + \cos\frac{5\pi}{8})(1 + \cos\frac{7\pi}{8}) = \frac{1}{8}.$						
13	By using the principle of mathematical induction						
	<i>prove</i> : $1.3 + 3.5 + 5.7 + \dots (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$ for all $n \in N$.						
14	Find the value of a for which the coefficients of the middle terms in the expansion of $(1 + ar)^4$ and $(1 - ar)^{16}$ are equal	$-\frac{3}{-}$					
	expansion of $(1 + ux)^{-1}$ and $(1 - ux)^{-1}$ are equal	5					
15	Find the relationship between a and b if coefficient of x' in	ab=1					
	$\left(ax^{2}+\frac{1}{bx}\right)^{11}$ and coefficient of x^{-7} in $\left(ax+\frac{1}{bx^{2}}\right)^{11}$ are equal.						
16	If one geometric mean G and two arithmetic means A_1 and A_2 are inserted						
	between two positive numbers, then prove that						
	$(2A_1 - A_2)(2A_2 - A_1) = G^2$						
17	The opposite angular points of a square are $(3, 4)$ and $(1, -1)$. Find the	$\left(-\frac{1}{5}\right)$					
	coordinates of the other two vertices.	$\begin{pmatrix} 2'2 \end{pmatrix}$					
		$\left(\frac{9}{2},\frac{1}{2}\right)$					
18	Find the equation of the circle passing through the centre of the circle						
	whose equation is $x^2+y^2-6x+4y+3=0$ and having its centre at the point of						
	intersection of the lines given by the equations $x - y = 1$ and						
	$2x + 3y = 7.$ (Ans: $(x - 2)^2 + (y - 1)^2 = 10$)						
19	Find equation of the ellipse, major axis on the Y axis and passing through						
	(3, 2) and (1, 6). Also find the coordinates of its foci eccentricity and length						
	of latus rectum. (Ans: $\frac{x^2}{10} + \frac{y^2}{40} = 1$)						
20	Find the equation of a line intersecting v axis at a distance of 4 units above	x + y = 4					
	origin and makes an angle 135° with the positive direction of x axis. Also						
	reduce the equation of the line into normal form and find the						
	perpendicular distance from the origin and angle between perpendicular						
	and the positive x axis.						